Leader Election in Well-Connected Graphs

被引:0
|
作者
Seth Gilbert
Peter Robinson
Suman Sourav
机构
[1] National University of Singapore,
[2] Augusta University,undefined
[3] Singapore University of Technology and Design,undefined
来源
Algorithmica | 2023年 / 85卷
关键词
Leader election; Conductance; Mixing time; Random walks; Congest model;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we look at the problem of randomized leader election in synchronous distributed networks with a special focus on the message complexity. We provide an algorithm that solves the implicit version of leader election (where non-leader nodes need not be aware of the identity of the leader) in any general network with O(nlog7/2n·tmix)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n} \log ^{7/2} n \cdot t_{mix})$$\end{document} messages and in O(tmixlog2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(t_{mix}\log ^2 n)$$\end{document} time, where n is the number of nodes and tmix\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{mix}$$\end{document} refers to the mixing time of a random walk in the network graph G. For several classes of well-connected networks (that have a large conductance or alternatively small mixing times e.g., expanders, hypercubes, etc), the above result implies extremely efficient (sublinear running time and messages) leader election algorithms. Correspondingly, we show that any substantial improvement is not possible over our algorithm, by presenting an almost matching lower bound for randomized leader election. We show that Ω(n/ϕ3/4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\sqrt{n}/\phi ^{3/4})$$\end{document} messages are needed for any leader election algorithm that succeeds with probability at least 1-o(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-o(1)$$\end{document}, where ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} refers to the conductance of a graph. To the best of our knowledge, this is the first work that shows a dependence between the time and message complexity to solve leader election and the connectivity of the graph G, which is often characterized by the graph’s conductance ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}. Apart from the Ω(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (m)$$\end{document} bound in Kutten et al. (J ACM 62(1):7:1–7:27, 2015) (where m denotes the number of edges of the graph), this work also provides one of the first non-trivial lower bounds for leader election in general networks.
引用
收藏
页码:1029 / 1066
页数:37
相关论文
共 50 条
  • [31] Well-Connected: Promoting Collaboration by Effective Networking
    Robb, David A.
    Chantler, Mike J.
    Methven, Thomas S.
    Padilla, Stefano
    PROCEEDINGS OF THE 19TH ACM CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING COMPANION, 2016, : 90 - 93
  • [32] The lipid droplet-a well-connected organelle
    Gao, Qiang
    Goodman, Joel M.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2015, 3
  • [33] Evolution of cooperation in networks with well-connected cooperators
    Brask, Josefine Bohr
    Brask, Jonatan Bohr
    NETWORK SCIENCE, 2024,
  • [34] The endoplasmic reticulum: A dynamic and well-connected organelle
    Hawes, Chris
    Kiviniemi, Petra
    Kriechbaumer, Verena
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2015, 57 (01) : 50 - 62
  • [35] A well-connected organ: Osteopathic view of the liver
    Roehrmann, Nicole
    Raabe, Isabel
    ZEITSCHRIFT FUER GANZHEITLICHE TIERMEDIZIN, 2022, 36 (03): : 96 - 100
  • [36] TAIT FLYPING CONJECTURE FOR WELL-CONNECTED LINKS
    SCHRIJVER, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 58 (01) : 65 - 146
  • [37] How well-connected is the surface of the global ocean?
    Froyland, Gary
    Stuart, Robyn M.
    van Sebille, Erik
    CHAOS, 2014, 24 (03)
  • [38] Creative Benefits From Well-Connected Leaders: Leader Social Network Ties as Facilitators of Employee Radical Creativity
    Venkataramani, Vijaya
    Richter, Andreas W.
    Clarke, Ronald
    JOURNAL OF APPLIED PSYCHOLOGY, 2014, 99 (05) : 966 - 975
  • [39] Leader election in oriented star graphs
    Shi, W
    Bouabdallah, A
    Srimani, PK
    NETWORKS, 2005, 45 (03) : 169 - 179
  • [40] From Louvain to Leiden: guaranteeing well-connected communities
    V. A. Traag
    L. Waltman
    N. J. van Eck
    Scientific Reports, 9