Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers

被引:0
|
作者
Sergey Neshveyev
Lars Tuset
机构
[1] University of Oslo,Department of Mathematics
[2] Oslo University College,Faculty of Engineering
来源
关键词
Irreducible Representation; Homogeneous Space; Weyl Group; Simple Root; Maximal Torus;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 < q < 1. We study a quantization C(Gq/Kq) of the algebra of continuous functions on G/K. Using results of Soibelman and Dijkhuizen-Stokman we classify the irreducible representations of C(Gq/Kq) and obtain a composition series for C(Gq/Kq). We describe closures of the symplectic leaves of G/K refining the well-known description in the case of flag manifolds in terms of the Bruhat order. We then show that the same rules describe the topology on the spectrum of C(Gq/Kq). Next we show that the family of C*-algebras C(Gq/Kq), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}[G/K]}$$\end{document} . Finally, extending a result of Nagy, we show that C(Gq/Kq) is canonically KK-equivalent to C(G/K).
引用
收藏
页码:223 / 250
页数:27
相关论文
共 50 条
  • [21] Homogeneous right coideal subalgebras of quantized enveloping algebras
    Heckenberger, I.
    Kolb, S.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 837 - 848
  • [22] Regularity functions for homogeneous algebras
    J. Herzog
    G. Restuccia
    Archiv der Mathematik, 2001, 76 : 100 - 108
  • [23] Regularity functions for homogeneous algebras
    Herzog, J
    Restuccia, G
    ARCHIV DER MATHEMATIK, 2001, 76 (02) : 100 - 108
  • [24] Poisson homogeneous spaces and Lie algebroids associated to Poisson actions
    Lu, JH
    DUKE MATHEMATICAL JOURNAL, 1997, 86 (02) : 261 - 304
  • [25] On homogeneous spaces with finite anti-solvable stabilizers
    Arteche, Giancarlo Lucchini
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 777 - 780
  • [26] JORDAN ALGEBRAS AND CONNECTIONS ON HOMOGENEOUS SPACES
    SAGLE, AA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 187 (01) : 405 - 427
  • [27] Weyl algebras for quantum homogeneous spaces
    Letzter, Gail
    Sahi, Siddhartha
    Salmasian, Hadi
    JOURNAL OF ALGEBRA, 2024, 655 : 651 - 721
  • [28] Concentration of symplectic volumes on Poisson homogeneous spaces
    Alekseev, Anton
    Hoffman, Benjamin
    Lane, Jeremy
    Li, Yanpeng
    JOURNAL OF SYMPLECTIC GEOMETRY, 2020, 18 (05) : 1197 - 1220
  • [29] DIRAC GEOMETRY AND INTEGRATION OF POISSON HOMOGENEOUS SPACES
    Bursztyn, Henrique
    Iglesias-Ponte, David
    Lu, Jiang-Hua
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 126 (03) : 939 - 1000
  • [30] CAYLEY-KLEIN POISSON HOMOGENEOUS SPACES
    Herranz, Francisco J.
    Ballesteros, Angel
    Gutierrez-Sagredo, Ivan
    Santander, Mariano
    PROCEEDINGS OF THE TWENTIETH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2019, : 161 - 183