Weyl algebras for quantum homogeneous spaces

被引:1
|
作者
Letzter, Gail [1 ]
Sahi, Siddhartha [1 ]
Salmasian, Hadi [2 ,3 ]
机构
[1] Natl Secur Agcy, Math Res Grp, Ft George G Meade, MD 20755 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ USA
[3] Univ Ottawa, Dept Math & Stat, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Weyl algebras; Quantum symmetric pairs; Reflection equations; Twisted tensor products; DEFORMATIONS;
D O I
10.1016/j.jalgebra.2023.12.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new family of quantum Weyl algebras where the polynomial part is the quantum analog of functions on homogeneous spaces corresponding to symmetric matrices, skew symmetric matrices, and the entire space of matrices of a given size. The construction uses twisted tensor products and their deformations combined with invariance properties derived from quantum symmetric pairs. These quantum Weyl algebras admit U q ( gl N )-module algebra structures compatible with standard ones on the polynomial part, have relations that are expressed nicely via matrices, and are closely related to an algebra arising in the theory of quantum bounded symmetric domains. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:651 / 721
页数:71
相关论文
共 50 条
  • [1] Quantum homogeneous spaces of connected Hopf algebras
    Brown, Ken
    Gilmartin, Paul
    [J]. JOURNAL OF ALGEBRA, 2016, 454 : 400 - 432
  • [2] The isomorphism problem for quantum affine spaces, homogenized quantized Weyl algebras, and quantum matrix algebras
    Caddis, Jason
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (10) : 2511 - 2524
  • [3] Quantum homogeneous spaces and quasi-Hopf algebras
    Enriquez, B
    Kosmann-Schwarzbach, Y
    [J]. CONFERENCE MOSHE FLATO 1999, VOL II: QUANTIZATION, DEFORMATIONS, AND SYMMETRIES, 2000, 22 : 105 - 121
  • [4] QUANTUM WEYL ALGEBRAS
    GIAQUINTO, A
    ZHANG, JJ
    [J]. JOURNAL OF ALGEBRA, 1995, 176 (03) : 861 - 881
  • [5] On the quantum Ruijs']jsenaars model, some quantum homogeneous spaces and Hecke algebras
    Iorgov, N
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 : 224 - 239
  • [6] On the automorphisms of quantum Weyl algebras
    Kitchin, Andrew P.
    Launois, Stephane
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (04) : 1514 - 1530
  • [7] Weyl product algebras and modulation spaces
    Holst, Anders
    Toft, Joachim
    Wahlberg, Patrik
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 251 (02) : 463 - 491
  • [8] On involutive homogeneous varieties and representations of Weyl algebras
    Coutinho, SC
    [J]. JOURNAL OF ALGEBRA, 2000, 227 (01) : 195 - 210
  • [9] Fourier algebras on homogeneous spaces
    Parthasarathy, K.
    Kumar, N. Shravan
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (02): : 187 - 205
  • [10] Connected quantized Weyl algebras and quantum cluster algebras
    Fish, Christopher D.
    Jordan, David A.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (08) : 2374 - 2412