The isomorphism problem for quantum affine spaces, homogenized quantized Weyl algebras, and quantum matrix algebras

被引:10
|
作者
Caddis, Jason [1 ]
机构
[1] Wake Forest Univ, Dept Math & Stat, POB 7388, Winston Salem, NC 27109 USA
关键词
D O I
10.1016/j.jpaa.2016.12.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bell and Zhang have shown that if A and B are two connected graded algebras finitely generated in degree one that are isomorphic as ungraded algebras, then they are isomorphic as graded algebras. We exploit this result to solve the isomorphism problem in the cases of quantum affine spaces, quantum matrix algebras, and homogenized multiparameter quantized Weyl algebras. Our result involves determining the degree one normal elements, factoring out, and then repeating. This creates an iterative process that allows one to determine relationships between relative parameters. (C) 2016 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:2511 / 2524
页数:14
相关论文
共 50 条
  • [1] The isomorphism problem for multiparameter quantized Weyl algebras
    Goodearl K.R.
    Hartwig J.T.
    São Paulo Journal of Mathematical Sciences, 2015, 9 (1) : 53 - 61
  • [2] Connected quantized Weyl algebras and quantum cluster algebras
    Fish, Christopher D.
    Jordan, David A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (08) : 2374 - 2412
  • [3] Weyl algebras for quantum homogeneous spaces
    Letzter, Gail
    Sahi, Siddhartha
    Salmasian, Hadi
    JOURNAL OF ALGEBRA, 2024, 655 : 651 - 721
  • [4] QUANTUM GROUPS, q-BOSON ALGEBRAS AND QUANTIZED WEYL ALGEBRAS
    Fang, Xin
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2011, 22 (05) : 675 - 694
  • [5] Quantized matrix algebras and quantum seeds
    Jakobsen, Hans Plesner
    Pagani, Chiara
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (04): : 713 - 753
  • [6] Quantum affine algebras and affine Hecke algebras
    Chari, V
    Pressley, A
    PACIFIC JOURNAL OF MATHEMATICS, 1996, 174 (02) : 295 - 326
  • [7] QUANTUM WEYL ALGEBRAS
    GIAQUINTO, A
    ZHANG, JJ
    JOURNAL OF ALGEBRA, 1995, 176 (03) : 861 - 881
  • [8] CLUSTER ALGEBRAS AND QUANTUM AFFINE ALGEBRAS
    Hernandez, David
    Leclerc, Bernard
    DUKE MATHEMATICAL JOURNAL, 2010, 154 (02) : 265 - 341
  • [9] QUANTUM AFFINE ALGEBRAS
    CHARI, V
    PRESSLEY, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) : 261 - 283
  • [10] Weyl Group Twists and Representations of Quantum Affine Borel Algebras
    Wang, Keyu
    Algebras and Representation Theory, 2025, 28 (01) : 281 - 313