The isomorphism problem for quantum affine spaces, homogenized quantized Weyl algebras, and quantum matrix algebras

被引:10
|
作者
Caddis, Jason [1 ]
机构
[1] Wake Forest Univ, Dept Math & Stat, POB 7388, Winston Salem, NC 27109 USA
关键词
D O I
10.1016/j.jpaa.2016.12.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bell and Zhang have shown that if A and B are two connected graded algebras finitely generated in degree one that are isomorphic as ungraded algebras, then they are isomorphic as graded algebras. We exploit this result to solve the isomorphism problem in the cases of quantum affine spaces, quantum matrix algebras, and homogenized multiparameter quantized Weyl algebras. Our result involves determining the degree one normal elements, factoring out, and then repeating. This creates an iterative process that allows one to determine relationships between relative parameters. (C) 2016 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:2511 / 2524
页数:14
相关论文
共 50 条
  • [21] Quantum Affine Vertex Algebras Associated to Untwisted Quantum Affinization Algebras
    Fei Kong
    Communications in Mathematical Physics, 2023, 402 : 2577 - 2625
  • [22] Quantum affine algebras and Grassmannians
    Chang, Wen
    Duan, Bing
    Fraser, Chris
    Li, Jian-Rong
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (3-4) : 1539 - 1583
  • [23] QUANTUM AFFINE WREATH ALGEBRAS
    Rosso, Daniele
    Savage, Alistair
    DOCUMENTA MATHEMATICA, 2020, 25 : 425 - 456
  • [24] Twisted Quantum Affine Algebras
    Vyjayanthi Chari
    Andrew Pressley
    Communications in Mathematical Physics, 1998, 196 : 461 - 476
  • [25] Twisted quantum affine algebras
    Chari, V
    Pressley, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 196 (02) : 461 - 476
  • [26] Quantum affine algebras and Grassmannians
    Wen Chang
    Bing Duan
    Chris Fraser
    Jian-Rong Li
    Mathematische Zeitschrift, 2020, 296 : 1539 - 1583
  • [27] Cells in quantum affine algebras
    Nakajima, H
    ALGEBRA COLLOQUIUM, 2004, 11 (01) : 141 - 154
  • [28] QUANTUM AFFINE ALGEBRAS AND THEIR REPRESENTATIONS
    KAZHDAN, D
    SOIBELMAN, Y
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 100 (1-3) : 217 - 224
  • [29] Quantum affine algebras and integrable quantum systems
    Chari, V
    Pressley, A
    QUANTUM FIELDS AND QUANTUM SPACE TIME, 1997, 364 : 245 - 263
  • [30] The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras
    Goodearl, KR
    Letzter, ES
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (03) : 1381 - 1403