Classifying pairs of commuting Toeplitz and Hankel matrices

被引:0
|
作者
V. N. Chugunov
Kh. D. Ikramov
机构
[1] Russian Academy of Sciences,Institute of Numerical Mathematics
[2] Moscow State University,Faculty of Computational Mathematics and Cybernetics
来源
Doklady Mathematics | 2015年 / 92卷
关键词
Diagonal Entry; DOKLADY Mathematic; Toeplitz Matrix; Toeplitz Matrice; Hankel Matrix;
D O I
暂无
中图分类号
学科分类号
摘要
Conditions under which two Toeplitz matrices are permutable have been known since at least 1995. Recently (in 2011) V.I. Gel’fgat stated conditions for permutability of a pair of Hankel matrices. In this communication, we outline a scheme for solving the much more difficult problem of describing all the pairs (T, H) such that T is a Toeplitz matrix, H is a Hankel matrix, and T commutes with H.
引用
收藏
页码:577 / 580
页数:3
相关论文
共 50 条
  • [41] Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet Spaces
    Ding, Qian
    Chen, Yong
    Lu, Yufeng
    [J]. JOURNAL OF FUNCTION SPACES, 2017, 2017
  • [42] Commuting Toeplitz and small Hankel operators on the Bergman space
    Wang, Jiawei
    Zhang, Jie
    Zhao, Xianfeng
    [J]. COLLECTANEA MATHEMATICA, 2024,
  • [43] On pairs of commuting nilpotent matrices
    Tomaž Košir
    Polona Oblak
    [J]. Transformation Groups, 2009, 14 : 175 - 182
  • [44] ON PAIRS OF COMMUTING NILPOTENT MATRICES
    Kosir, Tomaz
    Oblak, Polona
    [J]. TRANSFORMATION GROUPS, 2009, 14 (01) : 175 - 182
  • [45] On the Norms of Toeplitz and Hankel Matrices with Pell Numbers
    Karpuz, Eylem G.
    Ates, Firat
    Gungor, A. Dilek
    Cangul, I. Naci
    Cevik, A. Sinan
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1117 - +
  • [46] Some remarks on Toeplitz multipliers and Hankel matrices
    Pelczynski, Aleksander
    Sukochev, Fyodor
    [J]. STUDIA MATHEMATICA, 2006, 175 (02) : 175 - 204
  • [47] Bounded and compact Toeplitz plus Hankel matrices
    Ehrhardt, Torsten
    Hagger, Raffael
    Virtanen, Jani A.
    [J]. STUDIA MATHEMATICA, 2021, 260 (01) : 103 - 120
  • [48] SOLUTION OF LINEAR EQUATIONS WITH HANKEL AND TOEPLITZ MATRICES
    RISSANEN, J
    [J]. NUMERISCHE MATHEMATIK, 1974, 22 (05) : 361 - 366
  • [49] TENSOR BASE OF HANKEL (OR TOEPLITZ) MATRICES - APPLICATIONS
    LAFON, JC
    [J]. NUMERISCHE MATHEMATIK, 1975, 23 (04) : 349 - 361
  • [50] ON THE INVERSES OF TOEPLITZ-PLUS-HANKEL MATRICES
    HEINIG, G
    ROST, K
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 106 : 39 - 52