On pairs of commuting nilpotent matrices

被引:0
|
作者
Tomaž Košir
Polona Oblak
机构
[1] University of Ljubljana,Department of Mathematics, Faculty of Mathematics and Physics
[2] Institute of Mathematics,Department of Mathematics
[3] Physics and Mechanics,Faculty of Computer and Information Science
[4] University of Ljubljana,undefined
来源
Transformation Groups | 2009年 / 14卷
关键词
Complete Intersection; Nilpotent Element; Hilbert Function; Nilpotent Orbit; Cyclic Vector;
D O I
暂无
中图分类号
学科分类号
摘要
Let B be a nilpotent matrix and suppose that its Jordan canonical form is determined by a partition λ. Then it is known that its nilpotent commutator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}_B$\end{document} is an irreducible variety and that there is a unique partition μ such that the intersection of the orbit of nilpotent matrices corresponding to μ with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}_{B}$\end{document} is dense in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}_{B}$\end{document}. We prove that map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{D} $\end{document} given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{D}{\left( \lambda \right)} = \mu $\end{document} is an idempotent map. This answers a question of Basili and Iarrobino [9] and gives a partial answer to a question of Panyushev [18]. In the proof, we use the fact that for a generic matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ A \in \mathcal{N}_{B}$\end{document} the algebra generated by A and B is a Gorenstein algebra. Thus, a generic pair of commuting nilpotent matrices generates a Gorenstein algebra. We also describe \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{D}{\left( \lambda \right)} $\end{document} in terms of λ if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{D}{\left( \lambda \right)} $\end{document} has at most two parts.
引用
收藏
页码:175 / 182
页数:7
相关论文
共 50 条