Nonlinear nonhomogeneous periodic problems

被引:0
|
作者
Giuseppina Barletta
Giuseppina D’Aguì
Nikolaos S. Papageorgiou
机构
[1] Università di Reggio Calabria,DICEAM, Facoltà di Ingegneria
[2] Università degli studi di Messina,DICIEAMA
[3] National Technical University,Department of Mathematics
关键词
Constant sign solutions; Extremal solutions; Nodal solutions; Nonlinear maximum principle; Critical groups; 34B15; 34B18; 34C25; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a nonlinear periodic problem driven by a nonhomogeneous differential operator and a Carathéodory reaction. We show that it has at least three solutions, two of constant sign and the third nodal. In the particular case of the scalar p-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p-}$$\end{document}Laplacian and with a parametric reaction of equidiffusive type, we show that three solutions with precise sign exist if the parameter λ>λ^1(p)=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda > \widehat{\lambda}_1(p)=}$$\end{document} the first nonzero eigenvalue of the periodic scalar Laplacian. Finally, in the semilinear case (p=2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(p=2),}$$\end{document} we show that there is a second nodal solution, for a total of four nontrivial solutions all with sign information.
引用
收藏
相关论文
共 50 条
  • [1] Nonlinear nonhomogeneous periodic problems
    Barletta, Giuseppina
    D'Agui, Giuseppina
    Papageorgiou, Nikolaos S.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (02):
  • [2] Nonlinear, Nonhomogeneous Periodic Problems with no Growth Control on the Reaction
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2015, 21 (03) : 423 - 441
  • [3] Nonlinear, Nonhomogeneous Periodic Problems with no Growth Control on the Reaction
    Leszek Gasiński
    Nikolaos S. Papageorgiou
    Journal of Dynamical and Control Systems, 2015, 21 : 423 - 441
  • [4] Multiple and Nodal Solutions for a Class of Nonlinear, Nonhomogeneous Periodic Eigenvalue Problems
    Papageorgiou E.H.
    Differential Equations and Dynamical Systems, 2016, 24 (4) : 499 - 517
  • [5] Nonlinear nonhomogeneous singular problems
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Dušan D. Repovš
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [6] Nonlinear nonhomogeneous singular problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (01)
  • [7] NONLINEAR, NONHOMOGENEOUS PARAMETRIC NEUMANN PROBLEMS
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 48 (01) : 45 - 69
  • [8] Nonlinear nonhomogeneous Neumann eigenvalue problems
    Candito, Pasquale
    Livrea, Roberto
    Papageorgiou, Nikolaos S.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (46) : 1 - 24
  • [9] PARAMETRIC NONLINEAR NONHOMOGENEOUS ROBIN PROBLEMS
    Papaceorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (07) : 1289 - 1310
  • [10] NONLINEAR NONHOMOGENEOUS ROBIN PROBLEMS WITH CONVECTION
    Candito, Pasquale
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 755 - 767