Global existence and boundedness of solutions to a two-species chemotaxis-competition system with singular sensitivity and indirect signal production

被引:0
|
作者
Dongxiu Wang
Fugeng Zeng
Min Jiang
机构
[1] Guizhou Minzu University,School of Data Science and Information Engineering
关键词
Global existence; Boundedness; Singular sensitivity; Two-competing-species; 35B35; 35B40; 35B45; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with a two-competing-species chemotaxis system involving singular sensitivity and indirect signal production ut=Δu-χ1∇·(uw∇w)+μ1u(1-u-a1v),(x,t)∈Ω×(0,∞),vt=Δv-χ2∇·(vw∇w)+μ2v(1-v-a2u),(x,t)∈Ω×(0,∞),τwt=Δw-w+z,(x,t)∈Ω×(0,∞),τzt=Δz-z+u+v,(x,t)∈Ω×(0,∞),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll}u_{t}=\Delta u-\chi _1\nabla \cdot (\frac{u}{w}\nabla w)+\mu _1 u(1-u-a_1v), &{}(x,t)\in \Omega \times (0,\infty ), \\ v_{t}=\Delta v-\chi _2\nabla \cdot (\frac{v}{w}\nabla w)+\mu _2 v(1-v-a_2 u), &{}(x,t)\in \Omega \times (0,\infty ),\\ \tau w_{t}=\Delta w -w+z,&{}(x,t)\in \Omega \times (0,\infty ),\\ \tau z_{t}=\Delta z-z+u+v,&{}(x,t)\in \Omega \times (0,\infty ),\\ \end{array}\right. } \end{aligned}$$\end{document}associated with homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset R^{n}$$\end{document}, where the parameters χi,μi,ai(i=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{i},\mu _{i}, a_{i}(i=1, 2)$$\end{document} are assumed to be positive and τ∈{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \{0,1\}$$\end{document}. By the method of some priori estimates and semigroup technique, when τ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =1$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, it is proved that if max{χ1,χ2}<2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{\chi _{1}, \chi _{2}\}<\frac{2}{n}$$\end{document} the problem possesses a unique global classical solution. When τ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =1$$\end{document}, n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document}, it can only require χi>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{i}>0$$\end{document} for the existence of the global solution. In addition, when τ=0,n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =0, n\ge 2$$\end{document}, the global boundedness of the classical solution is determined as well.
引用
收藏
相关论文
共 50 条
  • [41] Global boundedness and asymptotic behavior of a two-species chemotaxis system with signal-dependent motilities and indirect signal consumption
    Qiu, Shuyan
    Zhang, Yumiao
    Tu, Xinyu
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (04)
  • [42] GLOBAL EXISTENCE IN A TWO-SPECIES CHEMOTAXIS SYSTEM WITH SIGNAL-DEPENDENT SENSITIVITY AND LOGISTIC SOURCE
    Shu, Axiu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (01): : 459 - 478
  • [43] Global Solvability in a Two-Species Chemotaxis System with Signal Production
    Ren, Guoqiang
    Xiang, Tian
    ACTA APPLICANDAE MATHEMATICAE, 2022, 178 (01)
  • [44] Boundedness and stabilization in a two-species competition system with density-dependent motility and indirect signal production
    Huang, Lei
    Zeng, Fugeng
    Zhou, Luxu
    Lu, Youjun
    RICERCHE DI MATEMATICA, 2025,
  • [45] Boundedness in a quasilinear two-species chemotaxis system with nonlinear sensitivity and nonlinear signal secretion
    Liu, Chao
    Liu, Bin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 320 : 206 - 246
  • [46] Boundedness and stabilization in a two-species chemotaxis system with signal absorption
    Zhang, Qingshan
    Tao, Weirun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (08) : 2672 - 2681
  • [47] Boundedness in a two-species chemotaxis system
    Lin, Ke
    Mu, Chunlai
    Wang, Liangchen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (18) : 5085 - 5096
  • [48] GLOBAL SOLUTIONS TO A TWO-SPECIES CHEMOTAXIS SYSTEM WITH GRADIENT DEPENDENT SENSITIVITY
    Liu, Changchun
    Pan, Enhui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (10): : 4269 - 4288
  • [49] Global existence and boundedness of solutions to a fully parabolic chemotaxis system with indirect signal production in R4
    Hosono, Tatsuya
    Laurencot, Philippe
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 : 2085 - 2133
  • [50] Boundedness and convergence of constant equilibria in a two -species chemotaxis-competition system with loop
    Tu, Xinyu
    Mu, Chunlai
    Qiu, Shuyan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198