Global existence and boundedness of solutions to a two-species chemotaxis-competition system with singular sensitivity and indirect signal production

被引:0
|
作者
Dongxiu Wang
Fugeng Zeng
Min Jiang
机构
[1] Guizhou Minzu University,School of Data Science and Information Engineering
关键词
Global existence; Boundedness; Singular sensitivity; Two-competing-species; 35B35; 35B40; 35B45; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with a two-competing-species chemotaxis system involving singular sensitivity and indirect signal production ut=Δu-χ1∇·(uw∇w)+μ1u(1-u-a1v),(x,t)∈Ω×(0,∞),vt=Δv-χ2∇·(vw∇w)+μ2v(1-v-a2u),(x,t)∈Ω×(0,∞),τwt=Δw-w+z,(x,t)∈Ω×(0,∞),τzt=Δz-z+u+v,(x,t)∈Ω×(0,∞),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll}u_{t}=\Delta u-\chi _1\nabla \cdot (\frac{u}{w}\nabla w)+\mu _1 u(1-u-a_1v), &{}(x,t)\in \Omega \times (0,\infty ), \\ v_{t}=\Delta v-\chi _2\nabla \cdot (\frac{v}{w}\nabla w)+\mu _2 v(1-v-a_2 u), &{}(x,t)\in \Omega \times (0,\infty ),\\ \tau w_{t}=\Delta w -w+z,&{}(x,t)\in \Omega \times (0,\infty ),\\ \tau z_{t}=\Delta z-z+u+v,&{}(x,t)\in \Omega \times (0,\infty ),\\ \end{array}\right. } \end{aligned}$$\end{document}associated with homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset R^{n}$$\end{document}, where the parameters χi,μi,ai(i=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{i},\mu _{i}, a_{i}(i=1, 2)$$\end{document} are assumed to be positive and τ∈{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \{0,1\}$$\end{document}. By the method of some priori estimates and semigroup technique, when τ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =1$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, it is proved that if max{χ1,χ2}<2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{\chi _{1}, \chi _{2}\}<\frac{2}{n}$$\end{document} the problem possesses a unique global classical solution. When τ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =1$$\end{document}, n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document}, it can only require χi>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{i}>0$$\end{document} for the existence of the global solution. In addition, when τ=0,n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =0, n\ge 2$$\end{document}, the global boundedness of the classical solution is determined as well.
引用
收藏
相关论文
共 50 条
  • [21] On a two-species chemotaxis system with indirect signal production and general competition terms
    Zheng, Pan
    Xiang, Yuting
    Xing, Jie
    Mathematical Models and Methods in Applied Sciences, 2022, 32 (07): : 1385 - 1430
  • [22] Global solutions to a two-species chemotaxis system with singular sensitivity and logistic source
    Ting Huang
    Lu Yang
    Yongjie Han
    Journal of Inequalities and Applications, 2019
  • [23] Global solutions to a two-species chemotaxis system with singular sensitivity and logistic source
    Huang, Ting
    Yang, Lu
    Han, Yongjie
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [24] Positive steady states in a two-species chemotaxis-competition system with signal-dependent diffusion and sensitivity
    Xue, Sheng
    Li, Shanbing
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 139
  • [25] Global existence and boundedness in a two-species chemotaxis system with nonlinear diffusion
    Huang, Ting
    Hou, Zhibo
    Han, Yongjie
    OPEN MATHEMATICS, 2021, 19 (01): : 949 - 962
  • [26] Global dynamics for a two-species chemotaxis-competition system with loop and nonlocal kinetics
    Qiu, Shuyan
    Luo, Li
    Tu, Xinyu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 415 : 235 - 265
  • [27] GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR IN A TWO-SPECIES CHEMOTAXIS SYSTEM WITH SIGNAL PRODUCTION
    Zhou, Xing
    Ren, Guoqiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (04): : 1771 - 1797
  • [28] Global Behavior in a Two-Species Chemotaxis-Competition System with Signal-Dependent Sensitivities and Nonlinear Productions
    Jiao, Zhan
    Jadlovska, Irena
    Li, Tongxing
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (01):
  • [29] Global existence and boundedness in a chemotaxis system with indirect nonlinear signal production
    B. Guettache
    N. Aissa
    Journal of Elliptic and Parabolic Equations, 2023, 9 : 875 - 886
  • [30] Global existence and boundedness in a chemotaxis system with indirect nonlinear signal production
    Guettache, B.
    Aissa, N.
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (02) : 875 - 886