Nonimprovable effective sufficient conditions are established for the unique solvability of the periodic problem
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ u^{\prime }_{i} (t) = {\ell }_{i} (u_{{i + 1}} )(t) + q_{i} (t)\quad (i = \overline{{1,n - 1}} ), $$\end{document}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ u^{\prime }_{n} (t) = {\ell }_{n} (u_{1} )(t) + q_{n} (t), $$\end{document}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ u_{j} (0) = u_{j} (\omega )\quad (j = \overline{{1,n}} ), $$\end{document} where ω > 0, ℓi : C([0, ω])→ L([0,ω]) are linear bounded operators, and qi∈L([0, ω]).