On a periodic boundary value problem for cyclic feedback type linear functional differential systems

被引:0
|
作者
Sulkhan Mukhigulashvili
机构
[1] Georgian Academy of Sciences,A. Razmadze Mathematical Institute
[2] Academy of Sciences of the Czech Republic,Mathematical Institute
关键词
34K06; 34K13;
D O I
暂无
中图分类号
学科分类号
摘要
Nonimprovable effective sufficient conditions are established for the unique solvability of the periodic problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ u^{\prime }_{i} (t) = {\ell }_{i} (u_{{i + 1}} )(t) + q_{i} (t)\quad (i = \overline{{1,n - 1}} ), $$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ u^{\prime }_{n} (t) = {\ell }_{n} (u_{1} )(t) + q_{n} (t), $$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ u_{j} (0) = u_{j} (\omega )\quad (j = \overline{{1,n}} ), $$\end{document} where ω  >  0, ℓi : C([0, ω])→ L([0,ω]) are linear bounded operators, and qi∈L([0, ω]).
引用
收藏
页码:255 / 260
页数:5
相关论文
共 50 条