Daugavet property in projective symmetric tensor products of Banach spaces

被引:0
|
作者
Miguel Martín
Abraham Rueda Zoca
机构
[1] Universidad de Granada,Departamento de Análisis Matemático, Facultad de Ciencias
[2] Universidad de Murcia,Departamento de Matemáticas, Campus de Espinardo
关键词
Daugavet property; Polynomial Daugavet property; Symmetric tensor product; Projective tensor product; -preduals; 46B04; 46B20; 46B25; 46B28; 46G25;
D O I
暂无
中图分类号
学科分类号
摘要
We show that all the symmetric projective tensor products of a Banach space X have the Daugavet property provided X has the Daugavet property and either X is an L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-predual (i.e., X∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{*}$$\end{document} is isometric to an L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-space) or X is a vector-valued L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-space. In the process of proving it, we get a number of results of independent interest. For instance, we characterise “localised” versions of the Daugavet property [i.e., Daugavet points and Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta$$\end{document}-points introduced in Abrahamsen et al. (Proc Edinb Math Soc 63:475–496 2020)] for L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-preduals in terms of the extreme points of the topological dual, a result which allows to characterise a polyhedrality property of real L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-preduals in terms of the absence of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta$$\end{document}-points and also to provide new examples of L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-preduals having the convex diametral local diameter two property. These results are also applied to nicely embedded Banach spaces [in the sense of Werner (J Funct Anal 143:117–128, 1997)] so, in particular, to function algebras. Next, we show that the Daugavet property and the polynomial Daugavet property are equivalent for L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-preduals and for spaces of Lipschitz functions. Finally, an improvement of recent results in Rueda Zoca (J Inst Math Jussieu 20(4):1409–1428, 2021) about the Daugavet property for projective tensor products is also obtained.
引用
收藏
相关论文
共 50 条
  • [1] Daugavet property in projective symmetric tensor products of Banach spaces
    Martin, Miguel
    Rueda Zoca, Abraham
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (02)
  • [2] Banach spaces with the Daugavet property
    Kadets, VM
    Shvidkoy, RV
    Sirotkin, GG
    Werner, D
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (02) : 855 - 873
  • [3] Banach spaces with the Daugavet property
    Kadets, VM
    Shvidkoy, RV
    Sirotkin, GG
    Werner, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (12): : 1291 - 1294
  • [4] Symmetric strong diameter two property in tensor products of Banach spaces
    Langemets, Johann
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
  • [5] DAUGAVET POINTS IN PROJECTIVE TENSOR PRODUCTS
    Dantas, Sheldon
    Jung, Mingu
    Rueda Zoca, Abraham
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2022, 73 (02): : 443 - 459
  • [6] Banach spaces with the Daugavet property, and the centralizer
    Guerrero, Julio Becerra
    Rodriguez-Palacios, Angel
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (08) : 2294 - 2302
  • [7] DAUGAVET PROPERTY AND SEPARABILITY IN BANACH SPACES
    Rueda Zoca, Abraham
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (01): : 68 - 84
  • [8] DAUGAVET PROPERTY IN TENSOR PRODUCT SPACES
    Zoca, Abraham Rueda
    Tradacete, Pedro
    Villanueva, Ignacio
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2021, 20 (04) : 1409 - 1428
  • [9] Weak compactness in projective tensor products of Banach spaces
    Wolfgang M. Ruess
    [J]. Archiv der Mathematik, 2011, 96 : 247 - 251
  • [10] Weak compactness in projective tensor products of Banach spaces
    Ruess, Wolfgang M.
    [J]. ARCHIV DER MATHEMATIK, 2011, 96 (03) : 247 - 251