Daugavet property in projective symmetric tensor products of Banach spaces

被引:8
|
作者
Martin, Miguel [1 ]
Rueda Zoca, Abraham [2 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, Granada 18071, Spain
[2] Univ Murcia, Dept Matemat, Campus Espinardo, Murcia 30100, Spain
关键词
Daugavet property; Polynomial Daugavet property; Symmetric tensor product; Projective tensor product; L-1-preduals; INTERSECTION-PROPERTIES; SUBSPACES; EQUATION; POINTS; BALLS; DUALS; NORMS;
D O I
10.1007/s43037-022-00186-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that all the symmetric projective tensor products of a Banach space X have the Daugavet property provided X has the Daugavet property and either X is an L-1-predual (i.e., X* is isometric to an L-1-space) or X is a vector-valued L-1-space. In the process of proving it, we get a number of results of independent interest. For instance, we characterise "localised" versions of the Daugavet property [i.e., Daugavet points and Delta-points introduced in Abrahamsen et al. (Proc Edinb Math Soc 63:475-496 2020)] for L-1-preduals in terms of the extreme points of the topological dual, a result which allows to characterise a polyhedrality property of real L-1-preduals in terms of the absence of Delta-points and also to provide new examples of L-1-preduals having the convex diametral local diameter two property. These results are also applied to nicely embedded Banach spaces [in the sense of Werner (J Funct Anal 143:117-128, 1997)] so, in particular, to function algebras. Next, we show that the Daugavet property and the polynomial Daugavet property are equivalent for L-1-preduals and for spaces of Lipschitz functions. Finally, an improvement of recent results in Rueda Zoca (J Inst Math Jussieu 20(4):1409-1428, 2021) about the Daugavet property for projective tensor products is also obtained.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Daugavet property in projective symmetric tensor products of Banach spaces
    Miguel Martín
    Abraham Rueda Zoca
    [J]. Banach Journal of Mathematical Analysis, 2022, 16
  • [2] Banach spaces with the Daugavet property
    Kadets, VM
    Shvidkoy, RV
    Sirotkin, GG
    Werner, D
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (02) : 855 - 873
  • [3] Banach spaces with the Daugavet property
    Kadets, VM
    Shvidkoy, RV
    Sirotkin, GG
    Werner, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (12): : 1291 - 1294
  • [4] Symmetric strong diameter two property in tensor products of Banach spaces
    Langemets, Johann
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
  • [5] DAUGAVET POINTS IN PROJECTIVE TENSOR PRODUCTS
    Dantas, Sheldon
    Jung, Mingu
    Rueda Zoca, Abraham
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2022, 73 (02): : 443 - 459
  • [6] Banach spaces with the Daugavet property, and the centralizer
    Guerrero, Julio Becerra
    Rodriguez-Palacios, Angel
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (08) : 2294 - 2302
  • [7] DAUGAVET PROPERTY AND SEPARABILITY IN BANACH SPACES
    Rueda Zoca, Abraham
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (01): : 68 - 84
  • [8] DAUGAVET PROPERTY IN TENSOR PRODUCT SPACES
    Zoca, Abraham Rueda
    Tradacete, Pedro
    Villanueva, Ignacio
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2021, 20 (04) : 1409 - 1428
  • [9] Weak compactness in projective tensor products of Banach spaces
    Wolfgang M. Ruess
    [J]. Archiv der Mathematik, 2011, 96 : 247 - 251
  • [10] Weak compactness in projective tensor products of Banach spaces
    Ruess, Wolfgang M.
    [J]. ARCHIV DER MATHEMATIK, 2011, 96 (03) : 247 - 251