Daugavet property in projective symmetric tensor products of Banach spaces

被引:0
|
作者
Miguel Martín
Abraham Rueda Zoca
机构
[1] Universidad de Granada,Departamento de Análisis Matemático, Facultad de Ciencias
[2] Universidad de Murcia,Departamento de Matemáticas, Campus de Espinardo
关键词
Daugavet property; Polynomial Daugavet property; Symmetric tensor product; Projective tensor product; -preduals; 46B04; 46B20; 46B25; 46B28; 46G25;
D O I
暂无
中图分类号
学科分类号
摘要
We show that all the symmetric projective tensor products of a Banach space X have the Daugavet property provided X has the Daugavet property and either X is an L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-predual (i.e., X∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{*}$$\end{document} is isometric to an L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-space) or X is a vector-valued L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-space. In the process of proving it, we get a number of results of independent interest. For instance, we characterise “localised” versions of the Daugavet property [i.e., Daugavet points and Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta$$\end{document}-points introduced in Abrahamsen et al. (Proc Edinb Math Soc 63:475–496 2020)] for L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-preduals in terms of the extreme points of the topological dual, a result which allows to characterise a polyhedrality property of real L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-preduals in terms of the absence of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta$$\end{document}-points and also to provide new examples of L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-preduals having the convex diametral local diameter two property. These results are also applied to nicely embedded Banach spaces [in the sense of Werner (J Funct Anal 143:117–128, 1997)] so, in particular, to function algebras. Next, we show that the Daugavet property and the polynomial Daugavet property are equivalent for L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-preduals and for spaces of Lipschitz functions. Finally, an improvement of recent results in Rueda Zoca (J Inst Math Jussieu 20(4):1409–1428, 2021) about the Daugavet property for projective tensor products is also obtained.
引用
收藏
相关论文
共 50 条
  • [21] TENSOR PRODUCTS OF BANACH SPACES
    CAC, NP
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 37 (01) : 235 - &
  • [22] Numerical Index and Daugavet Property of Operator Ideals and Tensor Products
    Miguel Martín
    Javier Merí
    Alicia Quero
    [J]. Mediterranean Journal of Mathematics, 2021, 18
  • [23] Anti-N-order polynomial Daugavet property on Banach spaces
    Emenyu, John
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (01): : 1097 - 1105
  • [24] Numerical Index and Daugavet Property of Operator Ideals and Tensor Products
    Martin, Miguel
    Meri, Javier
    Quero, Alicia
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (02)
  • [25] Banach space sequences and projective tensor products
    Fourie, JH
    Röntgen, IM
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (02) : 629 - 644
  • [26] Grothendieck Property for the Symmetric Projective Tensor Product
    Li, Yongjin
    Bu, Qingying
    [J]. Journal of Mathematical Study, 2016, 49 (04): : 429 - 432
  • [27] Projections on tensor products of Banach spaces
    Fernanda Botelho
    James Jamison
    [J]. Archiv der Mathematik, 2008, 90 : 341 - 352
  • [28] Projections on tensor products of Banach spaces
    Botelho, Fernanda
    Jamison, James
    [J]. ARCHIV DER MATHEMATIK, 2008, 90 (04) : 341 - 352
  • [29] OPERATORS ON TENSOR PRODUCTS OF BANACH SPACES
    ICHINOSE, T
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 170 (AUG) : 197 - &
  • [30] INTO ISOMORPHISMS IN TENSOR PRODUCTS OF BANACH SPACES
    Oja, Eve
    Randala, Vaiki
    [J]. QUAESTIONES MATHEMATICAE, 2009, 32 (02) : 269 - 279