Electron-Beam Lithographic Studies of the Scaling of Phase-Change Memory

被引:0
|
作者
Simone Raoux
Charles T. Rettner
Yi-Chou Chen
Geoffrey W. Burr
机构
来源
MRS Bulletin | 2008年 / 33卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Phase-change random-access memory (PCRAM) is a promising technology for future nonvolatile storage with the added potential for possible impact on dynamic random-access memory technologies. To be successful, however, PCRAM must be able to scale to dimensions on the order of a few tens of nanometers, considering the increasingly tiny memory cells that are projected for future technology nodes. The experiments discussed in this article directly address these scaling properties, examining both the materials themselves and the operation of nanoscale devices. One series of experiments is time-resolved x-ray diffraction studies of ultrathin films and nanostructures. Electron-beam lithography was applied to pattern thin films into nanostructures with dimensions down to 20 nm. The article also includes descriptions of prototype PCRAM devices, successfully fabricated and tested down to phase-change material cross sections of 3 nm × 20 nm. The measurements provide a clear demonstration of the excellent scaling potential offered by this technology.
引用
收藏
页码:847 / 853
页数:6
相关论文
共 50 条
  • [21] Impact of thermoelectric phenomena on phase-change memory performance metrics and scaling
    Lee, Jaeho
    Asheghi, Mehdi
    Goodson, Kenneth E.
    [J]. NANOTECHNOLOGY, 2012, 23 (20)
  • [22] Influence of electron beam exposure on crystallization of phase-change materials
    Pandian, Ramanathaswamy
    Kooi, Bart J.
    De Hosson, Jeff Th. M.
    Pauza, Andrew
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 101 (05)
  • [23] OPTICAL MEMORY Phase-change memory
    Kuramochi, Eiichi
    Notomi, Masaya
    [J]. NATURE PHOTONICS, 2015, 9 (11) : 712 - 714
  • [24] Scaling of Silicon Phase-Change Oscillators
    Cywar, Adam
    Dirisaglik, Faruk
    Akbulut, Mustafa
    Bakan, Gokhan
    Steen, Steven
    Silva, Helena
    Gokirmak, Ali
    [J]. IEEE ELECTRON DEVICE LETTERS, 2011, 32 (11) : 1486 - 1488
  • [25] QUANTITATIVE LITHOGRAPHIC PERFORMANCE OF PROXIMITY CORRECTION FOR ELECTRON-BEAM LITHOGRAPHY
    BOJKO, RJ
    HUGHES, BJ
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1990, 8 (06): : 1909 - 1913
  • [26] SOFT VACUUM, PULSED ELECTRON-BEAM HARDENING OF LITHOGRAPHIC POLYMERS
    KRISHNASWAMY, J
    LI, L
    COLLINS, GJ
    HIRAOKA, H
    CAOLO, MA
    [J]. JOURNAL OF MATERIALS RESEARCH, 1988, 3 (06) : 1259 - 1267
  • [27] PROBE-FORMING ELECTRON-BEAM SYSTEMS AS LITHOGRAPHIC TOOLS
    PFEIFFER, HC
    LANGNER, GO
    [J]. OPTIK, 1992, 92 (02): : 89 - 96
  • [28] Phase-change memory materials
    Kraft, Arno
    [J]. CHEMISTRY & INDUSTRY, 2022, 86 (01) : 43 - 43
  • [29] Interfacial phase-change memory
    Simpson R.E.
    Fons P.
    Kolobov A.V.
    Fukaya T.
    Krbal M.
    Yagi T.
    Tominaga J.
    [J]. Nature Nanotechnology, 2011, 6 (8) : 501 - 505
  • [30] Quasicrystalline phase-change memory
    Lee, Eun-Sung
    Yoo, Joung E.
    Yoon, Du S.
    Kim, Sung D.
    Kim, Yongjoo
    Hwang, Soobin
    Kim, Dasol
    Jeong, Hyeong-Chai
    Kim, Won T.
    Chang, Hye J.
    Suh, Hoyoung
    Ko, Dae-Hong
    Cho, Choonghee
    Choi, Yongjoon
    Kim, Do H.
    Cho, Mann-Ho
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)