A limiting free boundary problem with gradient constraint and Tug-of-War games

被引:0
|
作者
P. Blanc
J. V. da Silva
J. D. Rossi
机构
[1] Universidad de Buenos Aires,FCEyN, Department of Mathematics
关键词
Lipschitz regularity estimates; Free boundary problems; -Laplace operator; Existence/uniqueness of solutions; Tug-of-War games; 35J92; 35D40; 91A80;
D O I
暂无
中图分类号
学科分类号
摘要
In this manuscript we deal with regularity issues and the asymptotic behaviour (as p→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \rightarrow \infty $$\end{document}) of solutions for elliptic free boundary problems of p-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p-$$\end{document}Laplacian type (2≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \le p< \infty $$\end{document}): -Δpu(x)+λ0(x)χ{u>0}(x)=0inΩ⊂RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta _p u(x) + \lambda _0(x)\chi _{\{u>0\}}(x) = 0 \quad \text{ in } \quad \Omega \subset {\mathbb {R}}^N, \end{aligned}$$\end{document}with a prescribed Dirichlet boundary data, where λ0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _0>0$$\end{document} is a bounded function and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a regular domain. First, we prove the convergence as p→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow \infty $$\end{document} of any family of solutions (up)p≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u_p)_{p\ge 2}$$\end{document}, as well as we obtain the corresponding limit operator (in non-divergence form) ruling the limit equation, max-Δ∞u∞,-|∇u∞|+χ{u∞>0}=0inΩ∩{u∞≥0}u∞=Fon∂Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lllll} \max \left\{ -\Delta _{\infty } u_{\infty }, \,\, -|\nabla u_{\infty }| + \chi _{\{u_{\infty }>0\}}\right\} &{} = &{} 0 &{} \text{ in } &{} \Omega \cap \{u_{\infty } \ge 0\} \\ u_{\infty } &{} = &{} F &{} \text{ on } &{} \partial \Omega . \end{array} \right. \end{aligned}$$\end{document}Next, we obtain uniqueness for solutions to this limit problem. Finally, we show that any solution to the limit operator is a limit of value functions for a specific Tug-of-War game.
引用
收藏
页码:1441 / 1469
页数:28
相关论文
共 46 条
  • [21] TUG-OF-WAR GAMES WITH VARYING PROBABILITIES AND THE NORMALIZED p(x)-LAPLACIAN
    Arroyo, Angel
    Heino, Joonas
    Parviainen, Mikko
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (03) : 915 - 944
  • [22] Tug-of-War Model for Multi-armed Bandit Problem
    Kim, Song-Ju
    Aono, Masashi
    Hara, Masahiko
    [J]. UNCONVENTIONAL COMPUTATION, PROCEEDINGS, 2010, 6079 : 69 - +
  • [23] Tug-of-War and Infinity Laplace Equation with Vanishing Neumann Boundary Condition
    Antunovic, Tonci
    Peres, Yuval
    Sheffield, Scott
    Somersille, Stephanie
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (10) : 1839 - 1869
  • [24] Tug-of-war between Self-determination and Addiction: A Case of Mobile Games
    Chen, Su-Chang
    Chung, Kuo-Cheng
    Hu, Jeu-Jiun
    [J]. JOURNAL OF INTERNET TECHNOLOGY, 2020, 21 (06): : 1625 - 1634
  • [25] Local regularity for time-dependent tug-of-war games with varying probabilities
    Parviainen, Mikko
    Ruosteenoja, Eero
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (02) : 1357 - 1398
  • [26] Time-dependent tug-of-war games and normalized parabolic p-Laplace equations
    Han, Jeongmin
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214
  • [27] AN ASYMPTOTIC MEAN VALUE CHARACTERIZATION FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS RELATED TO TUG-OF-WAR GAMES
    Manfredi, Juan J.
    Parviainen, Mikko
    Rossi, Julio D.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (05) : 2058 - 2081
  • [28] Nonlocal PDEs on Graphs: From Tug-of-War Games to Unified Interpolation on Images and Point Clouds
    Elmoataz, Abderrahim
    Lozes, Francois
    Toutain, Matthieu
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2017, 57 (03) : 381 - 401
  • [29] Nonlocal PDEs on Graphs: From Tug-of-War Games to Unified Interpolation on Images and Point Clouds
    Abderrahim Elmoataz
    François Lozes
    Matthieu Toutain
    [J]. Journal of Mathematical Imaging and Vision, 2017, 57 : 381 - 401
  • [30] Tug-of-war of microtubule filaments at the boundary of a kinesin- and dynein-patterned surface
    Junya Ikuta
    Nagendra K. Kamisetty
    Hirofumi Shintaku
    Hidetoshi Kotera
    Takahide Kon
    Ryuji Yokokawa
    [J]. Scientific Reports, 4