AN ASYMPTOTIC MEAN VALUE CHARACTERIZATION FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS RELATED TO TUG-OF-WAR GAMES

被引:65
|
作者
Manfredi, Juan J. [1 ]
Parviainen, Mikko [2 ]
Rossi, Julio D. [3 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Aalto Univ, Sch Sci & Technol, FI-00076 Helsinki, Finland
[3] Univ Alicante, Dept Anal Matemat, E-03080 Alicante, Spain
基金
美国国家科学基金会;
关键词
Dirichlet boundary conditions; dynamic programming principle; parabolic p-Laplacian; parabolic mean value property; stochastic games; tug-of-war games with limited number of rounds; viscosity solutions; MINIMIZING LIPSCHITZ EXTENSIONS; INFINITY LAPLACIAN; VISCOSITY SOLUTIONS; CURVATURE;
D O I
10.1137/100782073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize solutions to the homogeneous parabolic p-Laplace equation u(t) - vertical bar del u|(2-p)Delta(p)u = (p - 2)Delta(infinity)u + Delta u in terms of an asymptotic mean value property. The results are connected with the analysis of tug-of-war games with noise in which the number of rounds is bounded. The value functions for these games approximate a solution to the PDE above when the parameter that controls the size of the possible steps goes to zero.
引用
收藏
页码:2058 / 2081
页数:24
相关论文
共 32 条
  • [1] Asymptotic mean value formulas, nonlocal space-time parabolic operators and anomalous tug-of-war games
    Fjellstrom, Carmina
    Nystrom, Kaj
    Wang, Yuqiong
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 342 : 150 - 178
  • [2] TUG-OF-WAR GAMES AND PARABOLIC PROBLEMS WITH SPATIAL AND TIME DEPENDENCE
    Del Pezzo, Leandro M.
    Rossi, Julio D.
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (3-4) : 269 - 288
  • [3] Asymptotic Lipschitz Regularity for Tug-of-War Games with Varying Probabilities
    Arroyo, Angel
    Luiro, Hannes
    Parviainen, Mikko
    Ruosteenoja, Eero
    [J]. POTENTIAL ANALYSIS, 2020, 53 (02) : 565 - 589
  • [4] Asymptotic Lipschitz Regularity for Tug-of-War Games with Varying Probabilities
    Ángel Arroyo
    Hannes Luiro
    Mikko Parviainen
    Eero Ruosteenoja
    [J]. Potential Analysis, 2020, 53 : 565 - 589
  • [5] Time-dependent tug-of-war games and normalized parabolic p-Laplace equations
    Han, Jeongmin
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214
  • [6] ASYMPTOTIC MEAN VALUE FORMULAS FOR PARABOLIC NONLINEAR EQUATIONS
    Blanc, Pablo
    Charro, Fernando
    Manfredi, Juan J.
    Rossi, Julio D.
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 64 (01): : 137 - 164
  • [7] Parabolic Biased Infinity Laplacian Equation Related to the Biased Tug-of-War
    Liu, Fang
    Jiang, Feida
    [J]. ADVANCED NONLINEAR STUDIES, 2019, 19 (01) : 89 - 112
  • [8] A continuous time tug-of-war game for parabolic p(x, t)-Laplace-type equations
    Heino, Joonas
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (05)
  • [9] Asymptotic mean value properties for the elliptic and parabolic double phase equations
    Meng, Weili
    Zhang, Chao
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (06):
  • [10] Asymptotic mean value properties for the elliptic and parabolic double phase equations
    Weili Meng
    Chao Zhang
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2023, 30