Harsanyi's impartial observer theorem with a restricted domain

被引:0
|
作者
Zvi Safra
Einat Weissengrin
机构
[1] Faculty of Management,
[2] Tel Aviv University,undefined
[3] Tel Aviv 69978,undefined
[4] Israel (e-mail: safraz@post.tau.ac.il; itai_w@netvision.net.il),undefined
来源
Social Choice and Welfare | 2003年 / 20卷
关键词
Large Domain; Restricted Domain; Impartial Observer; Social Lottery; Impartial Observer Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we extend Harsanyi's impartial observer theorem by showing that the large domain of social lotteries can be significantly restricted – it is sufficient that the domain consists only of constant extended lotteries.
引用
下载
收藏
页码:177 / 187
页数:10
相关论文
共 50 条
  • [21] HARSANYI AGGREGATION THEOREM WITHOUT SELFISH PREFERENCES
    SELINGER, S
    THEORY AND DECISION, 1986, 20 (01) : 53 - 62
  • [22] MORE ON HARSANYI UTILITARIAN CARDINAL WELFARE THEOREM
    BORDER, KC
    SOCIAL CHOICE AND WELFARE, 1985, 1 (04) : 279 - 281
  • [23] Inscribing the "impartial observer" in Sedgwick's 'Hope Leslie' (Catharine Maria Sedgwick)
    Ford, D
    LEGACY, 1997, 14 (02): : 81 - 92
  • [24] Harsanyi power solutions for graph-restricted games
    René van den Brink
    Gerard van der Laan
    Vitaly Pruzhansky
    International Journal of Game Theory, 2011, 40 : 87 - 110
  • [25] Chevalley's theorem with restricted variables
    Brink, David
    COMBINATORICA, 2011, 31 (01) : 127 - 130
  • [26] How Does the Impartial Observer Measure Risk?
    Heras, Antonio J.
    Teira, David
    CRITICA-REVISTA HISPANOAMERICANA DE FILOSOFIA, 2015, 47 (139): : 47 - 65
  • [27] Chevalley’s theorem with restricted variables
    David Brink
    Combinatorica, 2011, 31 : 127 - 130
  • [28] The Harsanyi value for nontransferable utility games with restricted cooperation
    Gallardo, J. M.
    Jimenez, N.
    Jimenez-Losada, A.
    OPTIMIZATION, 2018, 67 (06) : 943 - 956
  • [29] Harsanyi power solutions for graph-restricted games
    van den Brink, Rene
    van der Laan, Gerard
    Pruzhansky, Vitaly
    INTERNATIONAL JOURNAL OF GAME THEORY, 2011, 40 (01) : 87 - 110
  • [30] HARSANYI SOCIAL AGGREGATION THEOREM AND THE WEAK PARETO PRINCIPLE
    WEYMARK, JA
    SOCIAL CHOICE AND WELFARE, 1993, 10 (03) : 209 - 221