On alienation of two functional equations of quadratic type

被引:0
|
作者
Roman Ger
机构
[1] Silesian University,Institute of Mathematics
来源
Aequationes mathematicae | 2021年 / 95卷
关键词
Functional equations; Alienation; Quadratic type equations; Polynomial functions; Székelyhidi’s theorem; 39B52; 39B82;
D O I
暂无
中图分类号
学科分类号
摘要
  We deal with an alienation problem for an Euler–Lagrange type functional equation f(αx+βy)+f(αx-βy)=2α2f(x)+2β2f(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(\alpha x + \beta y) + f(\alpha x - \beta y) = 2\alpha ^2f(x) + 2\beta ^2f(y) \end{aligned}$$\end{document}assumed for fixed nonzero real numbers α,β,1≠α2≠β2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta ,\, 1 \ne \alpha ^2 \ne \beta ^2$$\end{document}, and the classic quadratic functional equation g(x+y)+g(x-y)=2g(x)+2g(y).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g(x+y) + g(x-y) = 2g(x) + 2g(y). \end{aligned}$$\end{document}We were inspired by papers of Kim et al. (Abstract and applied analysis, vol. 2013, Hindawi Publishing Corporation, 2013) and Gordji and Khodaei (Abstract and applied analysis, vol. 2009, Hindawi Publishing Corporation, 2009), where the special case g=γf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g = \gamma f$$\end{document} was examined.
引用
收藏
页码:1169 / 1180
页数:11
相关论文
共 50 条