On alienation of two functional equations of quadratic type

被引:0
|
作者
Roman Ger
机构
[1] Silesian University,Institute of Mathematics
来源
Aequationes mathematicae | 2021年 / 95卷
关键词
Functional equations; Alienation; Quadratic type equations; Polynomial functions; Székelyhidi’s theorem; 39B52; 39B82;
D O I
暂无
中图分类号
学科分类号
摘要
  We deal with an alienation problem for an Euler–Lagrange type functional equation f(αx+βy)+f(αx-βy)=2α2f(x)+2β2f(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(\alpha x + \beta y) + f(\alpha x - \beta y) = 2\alpha ^2f(x) + 2\beta ^2f(y) \end{aligned}$$\end{document}assumed for fixed nonzero real numbers α,β,1≠α2≠β2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta ,\, 1 \ne \alpha ^2 \ne \beta ^2$$\end{document}, and the classic quadratic functional equation g(x+y)+g(x-y)=2g(x)+2g(y).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g(x+y) + g(x-y) = 2g(x) + 2g(y). \end{aligned}$$\end{document}We were inspired by papers of Kim et al. (Abstract and applied analysis, vol. 2013, Hindawi Publishing Corporation, 2013) and Gordji and Khodaei (Abstract and applied analysis, vol. 2009, Hindawi Publishing Corporation, 2009), where the special case g=γf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g = \gamma f$$\end{document} was examined.
引用
收藏
页码:1169 / 1180
页数:11
相关论文
共 50 条
  • [21] A generalized mixed type of quartic–cubic–quadratic–additive functional equations
    T. Z. Xu
    J. M. Rassias
    W. X. Xu
    Ukrainian Mathematical Journal, 2011, 63 : 461 - 479
  • [22] ON TWO PEXIDERIZED FUNCTIONAL EQUATIONS OF DAVISON TYPE
    Najati, Abbas
    Sahoo, Prasanna K.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (04): : 539 - 544
  • [23] Alienation and stability of Jensen's and other functional equations
    Tial, Mohamed
    Zeglami, Driss
    AEQUATIONES MATHEMATICAE, 2024, 99 (1) : 275 - 286
  • [24] A GENERALIZED MIXED TYPE OF QUARTIC-CUBIC-QUADRATIC-ADDITIVE FUNCTIONAL EQUATIONS
    Xu, T. Z.
    Rassias, J. M.
    Xu, W. X.
    UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (03) : 461 - 479
  • [25] Fuzzy Stability of Quadratic Functional Equations
    Lee, Jung Rye
    Jang, Sun-Young
    Park, Choonkil
    Shin, Dong Yun
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [26] ON THE FUZZY STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS
    Lee, Jung Rye
    Jang, Sun-Young
    Shin, Dong Yun
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (01): : 65 - 80
  • [28] Fuzzy Stability of Quadratic Functional Equations
    JungRye Lee
    Sun-Young Jang
    Choonkil Park
    DongYun Shin
    Advances in Difference Equations, 2010
  • [29] Fixed points and quadratic ρ-functional equations
    Park, Choonkil
    Kim, Sang Og
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (04): : 1858 - 1871
  • [30] On restricted functional inequalities associated with quadratic functional equations
    M. A. Tareeghee
    A. Najati
    M. R. Abdollahpour
    B. Noori
    Aequationes mathematicae, 2022, 96 : 763 - 772