Alienation of the Quadratic and Additive Functional Equations

被引:0
|
作者
M. Adam
机构
[1] Silesian University of Technology,Institute of Mathematics
来源
Analysis Mathematica | 2019年 / 45卷
关键词
alienation; additive Cauchy functional equation; quadratic functional equation; Hyers–Ulam stability; primary 39B52; secondary 39B82;
D O I
暂无
中图分类号
学科分类号
摘要
Let G, H be uniquely 2-divisible Abelian groups. We study the solutions f, g: G → H of Pexider type functional equation (*)f(x+y)+f(x−y)+g(x+y)=2f(x)+2f(y)+g(x)+g(y),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x+y)+f(x-y)+g(x+y)=2f(x)+2f(y)+g(x)+g(y),$$\end{document} resulting from summing up the well known quadratic functional equation and additive Cauchy functional equation side by side. We show that modulo a constant equation (*) forces f to be a quadratic function, and g to be an additive one (alienation phenomenon). Moreover, some stability result for equation (*) is also presented.
引用
收藏
页码:449 / 460
页数:11
相关论文
共 50 条