Lipschitz Estimates for Conformal Maps from the Unit Disk to Convex Domains

被引:0
|
作者
Christopher G. Donohue
机构
[1] Syracuse University,Department of Mathematics
关键词
Conformal map; Hyperbolic metric; Kulkarni–Pinkall metric; Primary 30C35; Secondary 30C20; 30F45;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain an explicit uniform upper bound for the derivative of a conformal mapping of the unit disk onto a convex domain. This estimate depends only on the outer and inner radii of the domain, and on the minimum curvature radius of its boundary. Its proof is based on a Möbius invariant metric of hyperbolic type, introduced by Kulkarni and Pinkall (Math Z 216(1):89–129, 1994).
引用
收藏
页码:651 / 661
页数:10
相关论文
共 50 条