Lipschitz Estimates for Conformal Maps from the Unit Disk to Convex Domains

被引:0
|
作者
Donohue, Christopher G. [1 ]
机构
[1] Syracuse Univ, Dept Math, 215 Carnegie, Syracuse, NY 13244 USA
关键词
Conformal map; Hyperbolic metric; Kulkarni-Pinkall metric;
D O I
10.1007/s40315-022-00457-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain an explicit uniform upper bound for the derivative of a conformal mapping of the unit disk onto a convex domain. This estimate depends only on the outer and inner radii of the domain, and on the minimum curvature radius of its boundary. Its proof is based on a Mobius invariant metric of hyperbolic type, introduced by Kulkarni and Pinkall (Math Z 216(1):89-129, 1994).
引用
收藏
页码:651 / 661
页数:11
相关论文
共 50 条