On estimates of biharmonic functions on Lipschitz and convex domains

被引:0
|
作者
Zhongwei Shen
机构
[1] University of Kentucky,Department of Mathematics
来源
关键词
35J40; Biharmonic functions; Lipschitz domains; convex domains;
D O I
暂无
中图分类号
学科分类号
摘要
Using Maz ’ya type integral identities with power weights, we obtain new boundary estimates for biharmonic functions on Lipschitz and convex domains in ℝn. Forn ≥ 8, combinedwitharesultin[18], these estimates lead to the solvability of the Lp Dirichlet problem for the biharmonic equation on Lipschitz domains for a new range of p. In the case of convex domains, the estimates allow us to show that the Lp Dirichlet problem is uniquely solvable for any 2 − ε < p < ∞ and n ≥ 4.
引用
收藏
页码:721 / 734
页数:13
相关论文
共 50 条