Complexity Results for Generating Subgraphs

被引:0
|
作者
Vadim E. Levit
David Tankus
机构
[1] Ariel University,Department of Computer Science
[2] Sami Shamoon College of Engineering,Department of Software Engineering
来源
Algorithmica | 2018年 / 80卷
关键词
Weighted well-covered graph; Maximal independent set; Relating edge; Generating subgraph; Vector space;
D O I
暂无
中图分类号
学科分类号
摘要
A graph G is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function w is defined on its vertices. Then G is w-well-covered if all maximal independent sets are of the same weight. For every graph G, the set of weight functions w such that G is w-well-covered is a vector space, denoted WCW(G). Let B be a complete bipartite induced subgraph of G on vertex sets of bipartition BX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{X}$$\end{document} and BY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{Y}$$\end{document}. Then B is generating if there exists an independent set S such that S∪BX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \cup B_{X}$$\end{document} and S∪BY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \cup B_{Y}$$\end{document} are both maximal independent sets of G. In the restricted case that a generating subgraph B is isomorphic to K1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,1}$$\end{document}, the unique edge in B is called a relating edge. Deciding whether an input graph G is well-covered is co-NP-complete. Therefore finding WCW(G) is co-NP-hard. Deciding whether an edge is relating is NP-complete. Therefore, deciding whether a subgraph is generating is NP-complete as well. In this article we discuss the connections among these problems, provide proofs for NP-completeness for several restricted cases, and present polynomial characterizations for some other cases.
引用
下载
收藏
页码:2384 / 2399
页数:15
相关论文
共 50 条
  • [11] Forbidden subgraphs in generating graphs of finite groups
    Università Degli Studi di Padova, Dipartimento di Matematica Tullio Levi-Civita, Via Trieste 63, Padova
    35121, Italy
    arXiv,
  • [12] Forbidden Subgraphs Generating Almost the Same Sets
    Fujita, Shinya
    Furuya, Michitaka
    Ozeki, Kenta
    COMBINATORICS PROBABILITY & COMPUTING, 2013, 22 (05): : 733 - 748
  • [13] On the complexity of partitioning a graph into a few connected subgraphs
    Julien Bensmail
    Journal of Combinatorial Optimization, 2015, 30 : 174 - 187
  • [14] Complexity Framework for Forbidden Subgraphs I: The Framework
    Matthew Johnson
    Barnaby Martin
    Jelle J. Oostveen
    Sukanya Pandey
    Daniël Paulusma
    Siani Smith
    Erik Jan van Leeuwen
    Algorithmica, 2025, 87 (3) : 429 - 464
  • [15] Parameterized complexity of finding subgraphs with hereditary properties
    Khot, S
    Raman, V
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2000, 1858 : 137 - 147
  • [16] Parameterized complexity of finding regular induced subgraphs
    Moser, Hannes
    Thilikos, Dimitrios M.
    JOURNAL OF DISCRETE ALGORITHMS, 2009, 7 (02) : 181 - 190
  • [17] Parameterized complexity of finding connected induced subgraphs
    Cai, Leizhen
    Ye, Junjie
    THEORETICAL COMPUTER SCIENCE, 2015, 607 : 49 - 59
  • [18] Generating 3-vertex connected spanning subgraphs
    Boros, Endre
    Borys, Konrad
    Gurvich, Vladimir
    Rudolf, Gabor
    DISCRETE MATHEMATICS, 2008, 308 (24) : 6285 - 6297
  • [19] On the complexity of partitioning a graph into a few connected subgraphs
    Bensmail, Julien
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 30 (01) : 174 - 187
  • [20] Parameterized complexity of finding subgraphs with hereditary properties
    Khot, S
    Raman, V
    THEORETICAL COMPUTER SCIENCE, 2002, 289 (02) : 997 - 1008