Forbidden Subgraphs Generating Almost the Same Sets

被引:2
|
作者
Fujita, Shinya [1 ]
Furuya, Michitaka [2 ]
Ozeki, Kenta [3 ]
机构
[1] Maebashi Inst Technol, Dept Integrated Design Engn, Maebashi, Gunma 3710816, Japan
[2] Tokyo Univ Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
[3] Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
来源
COMBINATORICS PROBABILITY & COMPUTING | 2013年 / 22卷 / 05期
关键词
15;
D O I
10.1017/S0963548313000254
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let H be a set of connected graphs. A graph G is said to be H-free if G does not contain any element of H as an induced subgraph. Let F-k(H) be the set of k-connected H-free graphs. When we study the relationship between forbidden subgraphs and a certain graph property, we often allow a finite exceptional set of graphs. But if the symmetric difference of F-k(H-1) and F-k(H-2) is finite and we allow a finite number of exceptions, no graph property can distinguish them. Motivated by this observation, we study when we obtain a finite symmetric difference. In this paper, our main aim is the following. If vertical bar H vertical bar <= 3 and the symmetric difference of F-1({H}) and F-1(H) is finite, then either H is an element of H or vertical bar H vertical bar = 3 and H = C-3. Furthermore, we prove that if the symmetric difference of F-k({H-1}) and F-k({H-2}) is finite, then H-1 = H-2.
引用
收藏
页码:733 / 748
页数:16
相关论文
共 50 条
  • [1] Forbidden pairs with a common graph generating almost the same sets
    Chiba, Shuya
    Fujisawa, Jun
    Furuya, Michitaka
    Ikarashi, Hitonobu
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [2] Forbidden Subgraphs Generating Almost All Claw-Free Graphs with High Connectivity
    Furuya, Michitaka
    Yokota, Maho
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (09) : 987 - 993
  • [3] Forbidden subgraphs generating a finite set
    Fujisawa, Jun
    Plummer, Michael D.
    Saito, Akira
    [J]. DISCRETE MATHEMATICS, 2013, 313 (19) : 1835 - 1842
  • [4] Forbidden subgraphs in generating graphs of finite groups
    Università Degli Studi di Padova, Dipartimento di Matematica Tullio Levi-Civita, Via Trieste 63, Padova
    35121, Italy
    [J]. arXiv,
  • [5] Forbidden subgraphs and forbidden substructures
    Cherlin, G
    Shi, ND
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2001, 66 (03) : 1342 - 1352
  • [6] FORBIDDEN AND UNAVOIDABLE SUBGRAPHS
    GERNERT, D
    [J]. ARS COMBINATORIA, 1989, 27 : 165 - 176
  • [7] ON CHARACTERIZATIONS WITH FORBIDDEN SUBGRAPHS
    KLAVZAR, S
    PETKOVSEK, M
    [J]. COMBINATORICS /, 1988, 52 : 331 - 339
  • [8] On Minrank and Forbidden Subgraphs
    Haviv, Ishay
    [J]. ACM TRANSACTIONS ON COMPUTATION THEORY, 2019, 11 (04)
  • [9] Splits with forbidden subgraphs
    Axenovich, Maria
    Martin, Ryan R.
    [J]. DISCRETE MATHEMATICS, 2022, 345 (02)
  • [10] Forbidden subgraphs of power graphs
    Manna, Pallabi
    Cameron, Peter J.
    Mehatari, Ranjit
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):