Deciphering quantum fingerprints in electric conductance

被引:0
|
作者
Shunsuke Daimon
Kakeru Tsunekawa
Shinji Kawakami
Takashi Kikkawa
Rafael Ramos
Koichi Oyanagi
Tomi Ohtsuki
Eiji Saitoh
机构
[1] The University of Tokyo,Department of Applied Physics
[2] Institute for AI and Beyond,Faculty of Science and Engineering
[3] The University of Tokyo,Physics Division
[4] WPI Advanced Institute for Materials Research,undefined
[5] Tohoku University,undefined
[6] Institute for Materials Research,undefined
[7] Tohoku University,undefined
[8] Iwate University,undefined
[9] Sophia University,undefined
[10] Chiyoda,undefined
[11] Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS),undefined
[12] Departamento de Química-Física,undefined
[13] Universidade de Santiago de Compostela,undefined
来源
Nature Communications | / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
When the electric conductance of a nano-sized metal is measured at low temperatures, it often exhibits complex but reproducible patterns as a function of external magnetic fields called quantum fingerprints in electric conductance. Such complex patterns are due to quantum–mechanical interference of conduction electrons; when thermal disturbance is feeble and coherence of the electrons extends all over the sample, the quantum interference pattern reflects microscopic structures, such as crystalline defects and the shape of the sample, giving rise to complicated interference. Although the interference pattern carries such microscopic information, it looks so random that it has not been analysed. Here we show that machine learning allows us to decipher quantum fingerprints; fingerprint patterns in magneto-conductance are shown to be transcribed into spatial images of electron wave function intensities (WIs) in a sample by using generative machine learning. The output WIs reveal quantum interference states of conduction electrons, as well as sample shapes. The present result augments the human ability to identify quantum states, and it should allow microscopy of quantum nanostructures in materials by making use of quantum fingerprints.
引用
收藏
相关论文
共 50 条
  • [21] Quantum interference and conductance in silicon quantum wires
    Bagraev, NT
    Gehlhoff, W
    Ivanov, VK
    Klyachkin, LE
    Malyarenko, AM
    Naeser, A
    Rykov, SA
    Shelykh, IA
    INTERNATIONAL WORKSHOP ON NONDESTRUCTIVE TESTING AND COMPUTER SIMULATIONS IN SCIENCE AND ENGINEERING, 1999, 3687 : 112 - 121
  • [22] Conductance anomaly in a quantum well
    Kim, CS
    Olendski, O
    APPLIED PHYSICS LETTERS, 1996, 69 (17) : 2575 - 2577
  • [23] Conductance anomaly in a quantum well
    Chonnam Natl Univ, Kwangju, Korea, Republic of
    Appl Phys Lett, 17 (2575-2577):
  • [24] Measurement of the quantum of thermal conductance
    K. Schwab
    E. A. Henriksen
    J. M. Worlock
    M. L. Roukes
    Nature, 2000, 404 : 974 - 977
  • [25] Quantum conductance and electrical resistivity
    Silva, P. R.
    Nassif, Claudio
    Sampaio, Marcos
    Nemes, M. C.
    PHYSICS LETTERS A, 2006, 358 (5-6) : 358 - 362
  • [26] Scaling of the conductance in a quantum wire
    Meden, V
    Andergassen, S
    Metzner, W
    Schollwöck, U
    Schönhammer, K
    EUROPHYSICS LETTERS, 2003, 64 (06): : 769 - 775
  • [27] Conductance of a Mott quantum wire
    Starykh, OA
    Maslov, DL
    PHYSICAL REVIEW LETTERS, 1998, 80 (08) : 1694 - 1697
  • [28] Quantum conductance through a constriction
    Shanghai Jiaotong Daxue Xuebao, 3 (79-81):
  • [29] CONDUCTANCE FLUCTUATIONS IN QUANTUM DOTS
    EFETOV, KB
    PRIGODIN, VN
    IIDA, S
    PHYSICA B, 1994, 194 : 999 - 1000
  • [30] Conductance In Cylindrical Quantum Dots
    Pop, Nicolina
    Sajfert, Vjekoslav
    Popov, Dusan
    PROCEEDINGS OF THE PHYSICS CONFERENCE TIM - 11, 2012, 1472 : 172 - 178