Measurement of the quantum of thermal conductance

被引:0
|
作者
K. Schwab
E. A. Henriksen
J. M. Worlock
M. L. Roukes
机构
[1] Condensed Matter Physics 114-36,Department of Physics
[2] California Institute of Technology,undefined
[3] University of Utah,undefined
来源
Nature | 2000年 / 404卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The physics of mesoscopic electronic systems has been explored for more than 15 years. Mesoscopic phenomena in transport processes occur when the wavelength or the coherence length of the carriers becomes comparable to, or larger than, the sample dimensions. One striking result in this domain is the quantization of electrical conduction, observed in a quasi-one-dimensional constriction formed between reservoirs of two-dimensional electron gas1,2. The conductance of this system is determined by the number of participating quantum states or ‘channels’ within the constriction; in the ideal case, each spin-degenerate channel contributes a quantized unit of 2e2/h to the electrical conductance. It has been speculated that similar behaviour should be observable for thermal transport3,4 in mesoscopic phonon systems. But experiments attempted in this regime have so far yielded inconclusive results5,6,7,8,9. Here we report the observation of a quantized limiting value for the thermal conductance, Gth, in suspended insulating nanostructures at very low temperatures. The behaviour we observe is consistent with predictions10,11 for phonon transport in a ballistic, one-dimensional channel: at low temperatures, Gth approaches a maximum value of g0 = π2k2BT/3h, the universal quantum of thermal conductance.
引用
收藏
页码:974 / 977
页数:3
相关论文
共 50 条
  • [1] Measurement of the quantum of thermal conductance
    Schwab, K
    Henriksen, EA
    Worlock, JM
    Roukes, ML
    NATURE, 2000, 404 (6781) : 974 - 977
  • [2] Thermal conductance measurement on vacuum glazing
    Ng, N.
    Collins, R. E.
    So, L.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (25-26) : 4877 - 4885
  • [3] Thermal conductance in a quantum waveguide modulated with quantum dots
    Yao, Ling-Jiang
    Wang, Lingling
    Peng, Xiao-Fang
    Zou, B. S.
    Chen, Ke-Qiu
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (09): : 2862 - 2868
  • [4] Quantized thermal conductance of dielectric quantum wires
    Rego, LGC
    Kirczenow, G
    PHYSICAL REVIEW LETTERS, 1998, 81 (01) : 232 - 235
  • [5] A theoretical approach of the quantum thermal conductance of electrons
    Marcel, Agop
    Vizureanu, Petrica
    Ioannou, P. D.
    METALURGIA INTERNATIONAL, 2008, 13 (07): : 43 - 47
  • [6] Thermal conductance through discrete quantum channels
    Schwab, K
    Arlett, JL
    Worlock, JM
    Roukes, ML
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 9 (01): : 60 - 68
  • [7] Thermal conductance in quantum wire with two obstacles
    Nie, Liu-Ying
    Wang, Lingling
    Chen, Ke-Qiu
    Zou, B. S.
    Zhao, L. H.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 39 (02): : 185 - 190
  • [8] Thermal conductance of a weakly coupled quantum dot
    Tsaousidou, Margarita
    Tniberis, Georgios P.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 801 - +
  • [9] Thermoelectric Modules Thermal Conductance Measurement System
    Cernaianu, Mihail Octavian
    Gontean, Aurel
    2012 10TH INTERNATIONAL SYMPOSIUM ON ELECTRONICS AND TELECOMMUNICATIONS, 2012, : 41 - 44
  • [10] PREDICTION AND MEASUREMENT OF THE THERMAL CONDUCTANCE OF LAMINATED STACKS
    VEZIROGLU, TN
    WILLIAMS, A
    KAKAC, S
    NAYAK, P
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1979, 22 (03) : 447 - 459