Hybrid solution of the averaged Navier-Stokes equations for turbulent flow

被引:0
|
作者
J. A. Lima
J. S. Perez-Guerrero
R. M. Cotta
机构
[1] Mechanical Engineering Department,
[2] Universidade Federal do Rio de Janeiro,undefined
[3] EE/COPPE/UFRJ,undefined
[4] Cx. Postal 68503,undefined
[5] Cidade Universitária,undefined
[6] Rio de Janeiro,undefined
[7] RJ,undefined
[8] 21945–970,undefined
[9] Brasil,undefined
[10] Seção de Engenharia Mecânica e Materiai,undefined
[11] Instituto Militar de Engenharia – IME,undefined
[12] Rio de Janeiro,undefined
[13] RJ,undefined
[14] Brasil,undefined
来源
Computational Mechanics | 1997年 / 19卷
关键词
Reynolds Number; Turbulence Model; Numerical Scheme; Control Feature; Error Control;
D O I
暂无
中图分类号
学科分类号
摘要
The Generalized Integral Transform Technique (GITT) is utilized in the hybrid numerical-analytical solution of the Reynolds averaged Navier-Stokes equations, for developing turbulent flow inside a parallel-plates channel. An algebraic turbulence model is employed in modelling the turbulent diffusivity. The automatic global error control feature inherent to this approach, permits the determination of fully converged reference results for the validation of purely numerical methods. Therefore, numerical results for different values of Reynolds number are obtained, both for illustrating the convergence characteristics of the integral transform approach, and for critical comparisons with previously reported results through different models and numerical schemes.
引用
收藏
页码:297 / 307
页数:10
相关论文
共 50 条
  • [41] Partial Averaged Navier-Stokes approach for cavitating flow
    Zhang, L.
    Zhang, Y. N.
    INTERNATIONAL SYMPOSIUM OF CAVITATION AND MULTIPHASE FLOW (ISCM 2014), PTS 1-6, 2015, 72
  • [42] TURBULENT SOLUTION OF THE NAVIER-STOKES EQUATIONS FOR AN INHOMOGENEOUS DEVELOPING SHEAR LAYER.
    Deissler, R.G.
    1600,
  • [43] Modeling of Atmospheric Processes Based on the Averaged Navier-Stokes Equations
    Zhumagulov, Bakytzhan
    Zhakebaev, Dauren
    Abdibekova, Aigerim
    AEROSPACE AND MECHANICAL ENGINEERING, 2014, 565 : 74 - 79
  • [44] A time averaged steady state method for the Navier-Stokes equations
    Zhao, Mengjie
    Zorrilla, Ruben
    Rossi, Riccardo
    Wuechner, Roland
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (07) : 2023 - 2064
  • [45] Reynolds-Averaged Navier-Stokes Equations for Turbulence Modeling
    Alfonsi, Giancarlo
    APPLIED MECHANICS REVIEWS, 2009, 62 (04) : 1 - 20
  • [46] Deep learning of the spanwise-averaged Navier-Stokes equations
    Font, Bernat
    Weymouth, Gabriel D.
    Nguyen, Vinh-Tan
    Tutty, Owen R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 434
  • [47] Nonlinear corrector for Reynolds-averaged Navier-Stokes equations
    Frazza, Loic
    Loseille, Adrien
    Dervieux, Alain
    Alauzet, Frederic
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2019, 91 (11) : 557 - 585
  • [48] Overcoming the hyposonic limit of the compressible Navier-Stokes equations in turbulent flow simulations
    Kokkinakis, Ioannis William
    Drikakis, Dimitris
    PHYSICS OF FLUIDS, 2025, 37 (03)
  • [49] MULTIGRID SOLUTION OF THE NAVIER-STOKES EQUATIONS FOR THE FLOW IN A RAPIDLY ROTATING CYLINDER
    SCHRODER, W
    HANEL, D
    LECTURE NOTES IN PHYSICS, 1985, 218 : 487 - 491
  • [50] Numerical solution of Navier-Stokes equations for flow over a flapping wing
    National Key Laboratory of Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China
    Xibei Gongye Daxue Xuebao, 2008, 1 (104-109): : 104 - 109