Hybrid solution of the averaged Navier-Stokes equations for turbulent flow

被引:0
|
作者
J. A. Lima
J. S. Perez-Guerrero
R. M. Cotta
机构
[1] Mechanical Engineering Department,
[2] Universidade Federal do Rio de Janeiro,undefined
[3] EE/COPPE/UFRJ,undefined
[4] Cx. Postal 68503,undefined
[5] Cidade Universitária,undefined
[6] Rio de Janeiro,undefined
[7] RJ,undefined
[8] 21945–970,undefined
[9] Brasil,undefined
[10] Seção de Engenharia Mecânica e Materiai,undefined
[11] Instituto Militar de Engenharia – IME,undefined
[12] Rio de Janeiro,undefined
[13] RJ,undefined
[14] Brasil,undefined
来源
Computational Mechanics | 1997年 / 19卷
关键词
Reynolds Number; Turbulence Model; Numerical Scheme; Control Feature; Error Control;
D O I
暂无
中图分类号
学科分类号
摘要
The Generalized Integral Transform Technique (GITT) is utilized in the hybrid numerical-analytical solution of the Reynolds averaged Navier-Stokes equations, for developing turbulent flow inside a parallel-plates channel. An algebraic turbulence model is employed in modelling the turbulent diffusivity. The automatic global error control feature inherent to this approach, permits the determination of fully converged reference results for the validation of purely numerical methods. Therefore, numerical results for different values of Reynolds number are obtained, both for illustrating the convergence characteristics of the integral transform approach, and for critical comparisons with previously reported results through different models and numerical schemes.
引用
收藏
页码:297 / 307
页数:10
相关论文
共 50 条
  • [31] AN EXACT SOLUTION OF THE NAVIER-STOKES EQUATIONS
    CHESTER, W
    JOURNAL OF THE AERONAUTICAL SCIENCES, 1957, 24 (11): : 853 - 854
  • [32] What is a solution to the Navier-Stokes equations?
    Dubois, S
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (01) : 27 - 32
  • [33] A numerical technique for the solution of the Navier-Stokes equations of unsteady flow
    Loukopoulos, VC
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (7-8) : 534 - 550
  • [34] A Hybrid Regularization for the Navier-Stokes Equations
    Cibik, Aytekin
    Siddiqua, Farjana
    Layton, William
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2025, 41 (02)
  • [35] Partially-averaged Navier-Stokes modelling of turbulent channel flow with and without forcing
    Ma, J. M.
    Davidson, L.
    Peng, S. -H.
    Wang, F. J.
    TURBULENCE, HEAT AND MASS TRANSFER 6, 2009, : 439 - 442
  • [36] Partially averaged Navier-Stokes closure modeling for variable-density turbulent flow
    Pereira, F. S.
    Grinstein, F. F.
    Israel, D. M.
    Rauenzahn, R.
    Girimaji, S. S.
    PHYSICAL REVIEW FLUIDS, 2021, 6 (08)
  • [37] Modified partially averaged Navier-Stokes model for turbulent flow in passages with large curvature
    Ye, Weixiang
    Luo, Xianwu
    Li, Ying
    MODERN PHYSICS LETTERS B, 2020, 34 (23):
  • [38] Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-α) equations
    Coutand, D
    Shkoller, S
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2004, 3 (01) : 1 - 23
  • [39] ITERATIVE SOLUTION TECHNIQUES FOR THE STOKES AND NAVIER-STOKES EQUATIONS
    RAMAGE, A
    WATHEN, AJ
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1994, 19 (01) : 67 - 83
  • [40] SOLUTION OF STOKES AND NAVIER-STOKES EQUATIONS IN INFINITE TUBES
    LADYZHENSKAYA, OA
    SOLONNIKOV, VA
    TRUE, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (04): : 251 - 254