Polar foliations and isoparametric maps

被引:0
|
作者
Marcos M. Alexandrino
机构
[1] Instituto de Matemática e Estatística,
[2] Universidade de São Paulo,undefined
来源
关键词
Singular Riemannian foliations; Polar actions; Polar foliations; Isoparametric maps; Transnormal maps; Primary 53C12; Secondary 57R30;
D O I
暂无
中图分类号
学科分类号
摘要
A singular Riemannian foliation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} on a complete Riemannian manifold M is called a polar foliation if, for each regular point p, there is an immersed submanifold Σ, called section, that passes through p and that meets all the leaves and always perpendicularly. A typical example of a polar foliation is the partition of M into the orbits of a polar action, i.e., an isometric action with sections. In this article we prove that the leaves of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} coincide with the level sets of a smooth map H: M → Σ, if M is simply connected. In particular, the orbits of a polar action on a simply connected space are level sets of an isoparametric map. This result extends previous results due to the author and Gorodski, Heintze, Liu and Olmos, Carter and West, and Terng.
引用
收藏
页码:187 / 198
页数:11
相关论文
共 50 条
  • [1] Polar foliations and isoparametric maps
    Alexandrino, Marcos M.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 41 (02) : 187 - 198
  • [2] From isoparametric submanifolds to polar foliations
    Gudlaugur Thorbergsson
    São Paulo Journal of Mathematical Sciences, 2022, 16 : 459 - 472
  • [3] From isoparametric submanifolds to polar foliations
    Thorbergsson, Gudlaugur
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (01): : 459 - 472
  • [4] ISOPARAMETRIC FOLIATIONS AND THEIR BUILDINGS
    THORBERGSSON, G
    ANNALS OF MATHEMATICS, 1991, 133 (02) : 429 - 446
  • [5] Isoparametric foliations and the Pompeiu property†
    Provenzano, Luigi
    Savo, Alessandro
    MATHEMATICS IN ENGINEERING, 2023, 5 (02): : 1 - 27
  • [6] Singular Riemannian Foliations and Isoparametric Submanifolds
    Thorbergsson, Gudlaugur
    MILAN JOURNAL OF MATHEMATICS, 2010, 78 (01) : 355 - 370
  • [7] Isoparametric foliations and critical sets of eigenfunctions
    Tang, Zizhou
    Yan, Wenjiao
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (3-4) : 1217 - 1226
  • [8] Differential Topology Interacts with Isoparametric Foliations
    Qian, Chao
    Ge, Jianquan
    GEOMETRY AND TOPOLOGY OF MANIFOLDS, 2016, 154 : 147 - 157
  • [9] MINIMIZING CONES ASSOCIATED WITH ISOPARAMETRIC FOLIATIONS
    Tang, Zizhou
    Zhang, Yongsheng
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 115 (02) : 367 - 393
  • [10] Differential topology interacts with isoparametric foliations
    Qian, Chao
    Ge, Jianquan
    Springer Proceedings in Mathematics and Statistics, 2016, 154 : 147 - 157