The LINEX Weighted k-Means Clustering

被引:0
|
作者
Narges Ahmadzadehgoli
Adel Mohammadpour
Mohammad Hassan Behzadi
机构
[1] Islamic Azad University,Department of Statistics, Science and Research Branch
[2] Amirkabir University of Technology (Tehran Polytechnic),Department of Statistics, Faculty of Mathematics & Computer Science
关键词
LINEX loss function; Feature weights; Weighted k-means; Clustering;
D O I
暂无
中图分类号
学科分类号
摘要
LINEX weighted k-means is a version of weighted k-means clustering, which computes the weights of features in each cluster automatically. Determining which entity is belonged to which cluster depends on the cluster centers. In this study, the asymmetric LINEX loss function is used to compute the dissimilarity in the weighted k-means clustering. So, the cluster centroids are obtained by minimizing a LINEX based cost function. This loss function is used as a dissimilarity measure in clustering when one wants to overestimate or underestimate the cluster centroids, which helps to reduce some errors of misclassifying entities. Therefore, we discuss the LINEX weighted k-means algorithm. We examine the accuracy of the algorithm with some synthetic and real datasets.
引用
收藏
页码:147 / 154
页数:7
相关论文
共 50 条
  • [41] k-means clustering of extremes
    Janssen, Anja
    Wan, Phyllis
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 1211 - 1233
  • [42] K-means clustering on CGRA
    Lopes, Joao D.
    de Sousa, Jose T.
    Neto, Horacio
    Vestias, Mario
    2017 27TH INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2017,
  • [43] Online k-means Clustering
    Cohen-Addad, Vincent
    Guedj, Benjamin
    Kanade, Varun
    Rom, Guy
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [44] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163
  • [45] Deep k-Means: Jointly clustering with k-Means and learning representations
    Fard, Maziar Moradi
    Thonet, Thibaut
    Gaussier, Eric
    PATTERN RECOGNITION LETTERS, 2020, 138 : 185 - 192
  • [46] PSO Aided k-Means Clustering: Introducing Connectivity in k-Means
    Breaban, Mihaela Elena
    Luchian, Henri
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1227 - 1234
  • [47] Weighted bilateral K-means algorithm for fast co-clustering and fast spectral clustering
    Song, Kun
    Yao, Xiwen
    Nie, Feiping
    Li, Xuelong
    Xu, Mingliang
    PATTERN RECOGNITION, 2021, 109 (109)
  • [48] Multi-radar tracking based on weighted k-means clustering fusion
    Zhang, Yi
    Liu, Hongchang
    Fu, Wenyong
    Deng, Haowen
    2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 813 - 816
  • [49] Weighted joint LRTs for cooperative spectrum sensing using K-means clustering
    Fouda, Hager S.
    Farghaly, Samar I.
    Dawood, Heba S.
    PHYSICAL COMMUNICATION, 2024, 67
  • [50] On the strong consistency of feature-weighted k-means clustering in a nearmetric space
    Chakraborty, Saptarshi
    Das, Swagatam
    STAT, 2019, 8 (01):