The LINEX Weighted k-Means Clustering

被引:0
|
作者
Narges Ahmadzadehgoli
Adel Mohammadpour
Mohammad Hassan Behzadi
机构
[1] Islamic Azad University,Department of Statistics, Science and Research Branch
[2] Amirkabir University of Technology (Tehran Polytechnic),Department of Statistics, Faculty of Mathematics & Computer Science
关键词
LINEX loss function; Feature weights; Weighted k-means; Clustering;
D O I
暂无
中图分类号
学科分类号
摘要
LINEX weighted k-means is a version of weighted k-means clustering, which computes the weights of features in each cluster automatically. Determining which entity is belonged to which cluster depends on the cluster centers. In this study, the asymmetric LINEX loss function is used to compute the dissimilarity in the weighted k-means clustering. So, the cluster centroids are obtained by minimizing a LINEX based cost function. This loss function is used as a dissimilarity measure in clustering when one wants to overestimate or underestimate the cluster centroids, which helps to reduce some errors of misclassifying entities. Therefore, we discuss the LINEX weighted k-means algorithm. We examine the accuracy of the algorithm with some synthetic and real datasets.
引用
收藏
页码:147 / 154
页数:7
相关论文
共 50 条
  • [31] Transformed K-means Clustering
    Goel, Anurag
    Majumdar, Angshul
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1526 - 1530
  • [32] On autonomous k-means clustering
    Elomaa, T
    Koivistoinen, H
    FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS, 2005, 3488 : 228 - 236
  • [33] On the Optimality of k-means Clustering
    Dalton, Lori A.
    2013 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2013), 2013, : 70 - 71
  • [34] Balanced K-Means for Clustering
    Malinen, Mikko I.
    Franti, Pasi
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2014, 8621 : 32 - 41
  • [35] Discriminative k-Means Clustering
    Arandjelovic, Ognjen
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [36] Subspace K-means clustering
    Timmerman, Marieke E.
    Ceulemans, Eva
    De Roover, Kim
    Van Leeuwen, Karla
    BEHAVIOR RESEARCH METHODS, 2013, 45 (04) : 1011 - 1023
  • [37] Spherical k-Means Clustering
    Hornik, Kurt
    Feinerer, Ingo
    Kober, Martin
    Buchta, Christian
    JOURNAL OF STATISTICAL SOFTWARE, 2012, 50 (10): : 1 - 22
  • [38] K-Means Clustering Explained
    Emerson, Robert Wall
    JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS, 2024, 118 (01) : 65 - 66
  • [39] Power k-Means Clustering
    Xu, Jason
    Lange, Kenneth
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [40] Subspace K-means clustering
    Marieke E. Timmerman
    Eva Ceulemans
    Kim De Roover
    Karla Van Leeuwen
    Behavior Research Methods, 2013, 45 : 1011 - 1023