Locally Symmetric Contact Metric Manifolds

被引:0
|
作者
E. Boeckx
J. T. Cho
机构
[1] Katholieke Universiteit Leuven,
[2] Chonnam National University,undefined
来源
关键词
2000 Mathematics Subject Classifications: 53D10, 53C35; Key words: locally symmetric spaces, contact metric spaces;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a locally symmetric contact metric space is either Sasakian and of constant curvature 1 or locally isometric to the unit tangent sphere bundle (with its standard contact metric structure) of a Euclidean space.
引用
收藏
页码:269 / 281
页数:12
相关论文
共 50 条
  • [21] Some Non-Compactness Results for Locally Homogeneous Contact Metric Manifolds
    Lotta, Antonio
    Martin-Molina, Veronica
    RESULTS IN MATHEMATICS, 2022, 77 (04)
  • [22] On locally homogeneous contact metric manifolds with Reeb flow invariant Jacobi operator
    Lotta, Antonio
    NOTE DI MATEMATICA, 2023, 43 (02): : 49 - 54
  • [23] Some Non-Compactness Results for Locally Homogeneous Contact Metric Manifolds
    Antonio Lotta
    Verónica Martín-Molina
    Results in Mathematics, 2022, 77
  • [24] Gauss and Ricci Equations in Contact Manifolds with a Quarter-Symmetric Metric Connection
    Avik De
    Siraj Uddin
    Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 : 1689 - 1703
  • [25] Gauss and Ricci Equations in Contact Manifolds with a Quarter-Symmetric Metric Connection
    De, Avik
    Uddin, Siraj
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (04) : 1689 - 1703
  • [26] On a type of contact metric manifolds
    De U.C.
    Majhi P.
    Lobachevskii Journal of Mathematics, 2013, 34 (1) : 89 - 98
  • [27] On a generalization of contact metric manifolds
    Di Terlizzi, L
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2004, 64 (3-4): : 401 - 413
  • [28] Curvature of contact metric manifolds
    Blair, DE
    COMPLEX, CONTACT AND SYMMETRIC MANIFOLDS: IN HONOR OF L. VANHECKE, 2005, 234 : 1 - 13
  • [29] A generalization of contact metric manifolds
    Kim, J. H.
    Park, J. H.
    Sekigawa, K.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2014, 19 (02): : 94 - 105
  • [30] A note on contact metric manifolds
    Deshmukh, Sharief
    Ishan, Amira A.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (06): : 2007 - 2016