On locally homogeneous contact metric manifolds with Reeb flow invariant Jacobi operator

被引:0
|
作者
Lotta, Antonio [1 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
来源
NOTE DI MATEMATICA | 2023年 / 43卷 / 02期
关键词
locally homogeneous contact metric manifold; regular contact manifold; charac-teristic Jacobi operator;
D O I
10.1285/i15900932v43n2p49
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a locally homogeneous, regular contact metric manifold, whose characteristic Jacobi operator is invariant under the Reeb flow, is not compact, provided it admits at least one negative xi -sectional curvature.
引用
收藏
页码:49 / 54
页数:6
相关论文
共 50 条
  • [1] Trans-Sasakian 3-Manifolds with Reeb Flow Invariant Ricci Operator
    Zhao, Yan
    Wang, Wenjie
    Liu, Ximin
    MATHEMATICS, 2018, 6 (11):
  • [2] Real Hypersurfaces with Reeb Invariant Structure Jacobi Operator in the Complex Quadric
    Kim, Gyu Jong
    Jeong, Imsoon
    Lee, Hyunjin
    FILOMAT, 2021, 35 (12) : 3933 - 3944
  • [3] Some Non-Compactness Results for Locally Homogeneous Contact Metric Manifolds
    Lotta, Antonio
    Martin-Molina, Veronica
    RESULTS IN MATHEMATICS, 2022, 77 (04)
  • [4] Some Non-Compactness Results for Locally Homogeneous Contact Metric Manifolds
    Antonio Lotta
    Verónica Martín-Molina
    Results in Mathematics, 2022, 77
  • [5] ON INVARIANT SUBMANIFOLDS OF CONTACT METRIC MANIFOLDS
    ENDO, H
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1991, 22 (06): : 449 - 453
  • [6] ON INVARIANT SUBMANIFOLDS OF CONTACT METRIC MANIFOLDS
    Tripathi, Mukut Mani
    Sasahara, Tooru
    Kim, Jeong-Sik
    TSUKUBA JOURNAL OF MATHEMATICS, 2005, 29 (02) : 495 - 510
  • [7] Locally Symmetric Contact Metric Manifolds
    E. Boeckx
    J. T. Cho
    Monatshefte für Mathematik, 2006, 148 : 269 - 281
  • [8] Locally symmetric contact metric manifolds
    Boeckx, E.
    Cho, J. T.
    MONATSHEFTE FUR MATHEMATIK, 2006, 148 (04): : 269 - 281
  • [9] JACOBI MANIFOLDS AND COMPLEX HOMOGENEOUS CONTACT SPACES
    LICHNEROWICZ, A
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1988, 67 (02): : 131 - 173
  • [10] CONTACT 3-MANIFOLDS WITH THE REEB FLOW SYMMETRY
    Cho, Tong Taek
    TOHOKU MATHEMATICAL JOURNAL, 2014, 66 (04) : 491 - 500