Stability and convergence of a local discontinuous Galerkin method for the fractional diffusion equation with distributed order

被引:1
|
作者
Leilei Wei
Lijie Liu
Huixia Sun
机构
[1] Henan University of Technology,College of Science
关键词
Fractional diffusion equation; Stabilized finite element method; Stability; Error estimate; 65M12; 65M06; 35S10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a numerical method is proposed for solving distributed order diffusion equation, which arises in the mathematical modeling of ultra-slow diffusion processes observed in some physical problems, whose solution decays logarithmically as the time t tends to infinity. Based on local discontinuous Galerkin method in space, we develop a fully discrete scheme and prove that the scheme is unconditionally stable and convergent with the order O(hk+1+Δt+Δα2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^{k+1}+\Delta t+\Delta \alpha ^2)$$\end{document}, where h,Δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h, \Delta t$$\end{document},Δα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \alpha $$\end{document} and k are the step size in space, time, distributed order and the degree of piecewise polynomials, respectively. Extensive numerical examples are carried out to illustrate the effectiveness of the numerical schemes.
引用
下载
收藏
页码:323 / 341
页数:18
相关论文
共 50 条