In this paper, a numerical method is proposed for solving distributed order diffusion equation, which arises in the mathematical modeling of ultra-slow diffusion processes observed in some physical problems, whose solution decays logarithmically as the time t tends to infinity. Based on local discontinuous Galerkin method in space, we develop a fully discrete scheme and prove that the scheme is unconditionally stable and convergent with the order O(hk+1+Δt+Δα2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$O(h^{k+1}+\Delta t+\Delta \alpha ^2)$$\end{document}, where h,Δt\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$h, \Delta t$$\end{document},Δα\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta \alpha $$\end{document} and k are the step size in space, time, distributed order and the degree of piecewise polynomials, respectively. Extensive numerical examples are carried out to illustrate the effectiveness of the numerical schemes.