Stability and convergence of a local discontinuous Galerkin method for the fractional diffusion equation with distributed order

被引:1
|
作者
Leilei Wei
Lijie Liu
Huixia Sun
机构
[1] Henan University of Technology,College of Science
关键词
Fractional diffusion equation; Stabilized finite element method; Stability; Error estimate; 65M12; 65M06; 35S10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a numerical method is proposed for solving distributed order diffusion equation, which arises in the mathematical modeling of ultra-slow diffusion processes observed in some physical problems, whose solution decays logarithmically as the time t tends to infinity. Based on local discontinuous Galerkin method in space, we develop a fully discrete scheme and prove that the scheme is unconditionally stable and convergent with the order O(hk+1+Δt+Δα2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^{k+1}+\Delta t+\Delta \alpha ^2)$$\end{document}, where h,Δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h, \Delta t$$\end{document},Δα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \alpha $$\end{document} and k are the step size in space, time, distributed order and the degree of piecewise polynomials, respectively. Extensive numerical examples are carried out to illustrate the effectiveness of the numerical schemes.
引用
下载
收藏
页码:323 / 341
页数:18
相关论文
共 50 条
  • [31] A direct discontinuous Galerkin method for time-fractional diffusion equation with discontinuous diffusive coefficient
    Huang, Chaobao
    An, Na
    Yu, Xijun
    Zhang, Huili
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (09) : 1445 - 1461
  • [32] Local discontinuous Galerkin method for a hidden-memory variable order reaction-diffusion equation
    Wei, Leilei
    Wang, Huanhuan
    Chen, Yanping
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (03) : 2857 - 2872
  • [33] LOCAL DISCONTINUOUS GALERKIN METHODS FOR FRACTIONAL DIFFUSION EQUATIONS
    Deng, W. H.
    Hesthaven, J. S.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06): : 1845 - 1864
  • [34] Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation
    Leilei Wei
    Huiya Dai
    Dingling Zhang
    Zhiyong Si
    Calcolo, 2014, 51 : 175 - 192
  • [35] Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation
    Wei, Leilei
    Dai, Huiya
    Zhang, Dingling
    Si, Zhiyong
    CALCOLO, 2014, 51 (01) : 175 - 192
  • [36] Convergence order estimates of the local discontinuous Galerkin method for instationary Darcy flow
    Rupp, Andreas
    Knabner, Peter
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (04) : 1374 - 1394
  • [37] Solving a non-linear fractional convection-diffusion equation using local discontinuous Galerkin method
    Safdari, Hamid
    Rajabzadeh, Majid
    Khalighi, Moein
    APPLIED NUMERICAL MATHEMATICS, 2021, 165 : 22 - 34
  • [38] Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation
    Du, Yanwei
    Liu, Yang
    Li, Hong
    Fang, Zhichao
    He, Siriguleng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 344 : 108 - 126
  • [40] Local discontinuous Galerkin method for distributed-order time and space-fractional convection–diffusion and Schrödinger-type equations
    Tarek Aboelenen
    Nonlinear Dynamics, 2018, 92 : 395 - 413