共 50 条
Tameness and Rosenthal type locally convex spaces
被引:0
|作者:
Matan Komisarchik
Michael Megrelishvili
机构:
[1] Bar-Ilan University,Department of Mathematics
来源:
关键词:
Asplund space;
Bornologies;
Double limit property;
Haydon theorem;
Reflexive space;
Rosenthal dichotomy;
Rosenthal space;
Tame locally convex;
Tame system;
46A03;
46A17;
46B22;
37Bxx;
54Hxx;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Motivated by Rosenthal’s famous l1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$l^1$$\end{document}-dichotomy in Banach spaces, Haydon’s theorem, and additionally by recent works on tame dynamical systems, we introduce the class of tame locally convex spaces. This is a natural locally convex analogue of Rosenthal Banach spaces (for which any bounded sequence contains a weak Cauchy subsequence). Our approach is based on a bornology of tame subsets which in turn is closely related to eventual fragmentability. This leads, among others, to the following results:extending Haydon’s characterization of Rosenthal Banach spaces, by showing that a lcs E is tame iff every weak-star compact, equicontinuous convex subset of E∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$E^{*}$$\end{document} is the strong closed convex hull of its extreme points iff co¯w∗(K)=co¯(K)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\overline{\mathrm{{co\,}}}^{w^{*}}(K) = \overline{\mathrm{{co\,}}}(K)$$\end{document} for every weak-star compact equicontinuous subset K of E∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$E^{*}$$\end{document};E is tame iff there is no bounded sequence equivalent to the generalized l1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$l^{1}$$\end{document}-sequence;strengthening some results of W.M. Ruess about Rosenthal’s dichotomy;applying the Davis–Figiel–Johnson–Pelczyński (DFJP) technique one may show that every tame operatorT:E→F\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T :E \rightarrow F$$\end{document} between a lcs E and a Banach space F can be factored through a tame (i.e., Rosenthal) Banach space.
引用
收藏
相关论文