Tameness and Rosenthal type locally convex spaces

被引:0
|
作者
Matan Komisarchik
Michael Megrelishvili
机构
[1] Bar-Ilan University,Department of Mathematics
关键词
Asplund space; Bornologies; Double limit property; Haydon theorem; Reflexive space; Rosenthal dichotomy; Rosenthal space; Tame locally convex; Tame system; 46A03; 46A17; 46B22; 37Bxx; 54Hxx;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by Rosenthal’s famous l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^1$$\end{document}-dichotomy in Banach spaces, Haydon’s theorem, and additionally by recent works on tame dynamical systems, we introduce the class of tame locally convex spaces. This is a natural locally convex analogue of Rosenthal Banach spaces (for which any bounded sequence contains a weak Cauchy subsequence). Our approach is based on a bornology of tame subsets which in turn is closely related to eventual fragmentability. This leads, among others, to the following results:extending Haydon’s characterization of Rosenthal Banach spaces, by showing that a lcs E is tame iff every weak-star compact, equicontinuous convex subset of E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} is the strong closed convex hull of its extreme points iff co¯w∗(K)=co¯(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathrm{{co\,}}}^{w^{*}}(K) = \overline{\mathrm{{co\,}}}(K)$$\end{document} for every weak-star compact equicontinuous subset K of E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document};E is tame iff there is no bounded sequence equivalent to the generalized l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{1}$$\end{document}-sequence;strengthening some results of W.M. Ruess about Rosenthal’s dichotomy;applying the Davis–Figiel–Johnson–Pelczyński (DFJP) technique one may show that every tame operatorT:E→F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T :E \rightarrow F$$\end{document} between a lcs E and a Banach space F can be factored through a tame (i.e., Rosenthal) Banach space.
引用
收藏
相关论文
共 50 条