Dunford-Pettis type properties of locally convex spaces

被引:3
|
作者
Gabriyelyan, Saak [1 ]
机构
[1] Ben Gurion Univ Negev, PO 653, Beer Sheva, Israel
关键词
Dunford-Pettis property; Quasi Dunford-Pettis property of order p; Sequential Dunford-Pettis property of order ( p; q); Weak Glicksberg property; OPERATORS; ASTERISK;
D O I
10.1007/s43034-024-00359-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1953, Grothendieck introduced and studied the Dunford-Pettis property (the DP property) and the strict Dunford-Pettis property (the strict DP property). The DP property of order p is an element of [1,infinity] for Banach spaces was introduced by Castillo and Sanchez in 1993. Being motivated by these notions, for p, q is an element of [1,infinity], we define the quasi-Dunford-Pettis property of order p (the quasi DPp property) and the sequential Dunford-Pettis property of order (p, q) (the sequential DP(p,q) property). We show that a locally convex space (lcs) E has the DP property if the space E endowed with the Grothendieck topology tau(Sigma') has the weak Glicksberg property, and E has the quasi DPp property if the space (E, tau(Sigma')) has the p-Schur property. We also characterize lcs with the sequential DP(p,q) property. Some permanent properties and relationships between Dunford-Pettis type properties are studied. Numerous (counter)examples are given. In particular, we give the first example of an lcs with the strict DP property but without the DP property and show that the completion of even normed spaces with the DP property may not have the DP property.
引用
收藏
页数:38
相关论文
共 50 条
  • [2] Dunford-Pettis Properties and Spaces of Operators
    Ghenciu, Ioana
    Lewis, Paul
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2009, 52 (02): : 213 - 223
  • [3] Dunford-Pettis type properties and the Grothendieck property for function spaces
    Gabriyelyan, Saak
    Kakol, Jerzy
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (03): : 871 - 884
  • [4] Grothendieck spaces with the Dunford-Pettis property
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    POSITIVITY, 2010, 14 (01) : 145 - 164
  • [5] The Dunford-Pettis property on spaces of polynomials
    Cilia, Raffaella
    Gutierrez, Joaquin M.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 69 (04): : 433 - 450
  • [6] The Dunford-Pettis property for symmetric spaces
    Kaminska, A
    Mastylo, M
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2000, 52 (04): : 789 - 803
  • [7] Dunford-Pettis properties, Hilbert spaces and projective tensor products
    Bunce, Leslie J.
    Peralta, Antonio M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (02) : 692 - 710
  • [8] A note on Dunford-Pettis like properties and complemented spaces of operators
    Ghenciu, Ioana
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2018, 59 (02): : 207 - 222
  • [9] DUALS OF CERTAIN SPACES WITH DUNFORD-PETTIS PROPERTY
    STEGALL, CP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (07): : A799 - A799
  • [10] Strong Dunford-Pettis sets and spaces of operators
    Ghenciu, I
    Lewis, PW
    MONATSHEFTE FUR MATHEMATIK, 2005, 144 (04): : 275 - 284