Limited type subsets of locally convex spaces

被引:1
|
作者
Gabriyelyan, Saak [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, PO 653, Beer Sheva, Israel
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 11期
关键词
(p; q )-limited set; coarse p-limited set; p-( V & lowast; ) set; p-convergent operator; p-barrelled space; PROPERTY; OPERATORS; ASTERISK; SETS;
D O I
10.3934/math.20241513
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 <= p <= q <= infinity. Being motivated by the classical notions of limited, p-limited, and coarse p-limited subsets of a Banach space, we introduce and study (p, q)-limited subsets and their equicontinuous versions and coarse p-limited subsets of an arbitrary locally convex space E. Operator characterizations of these classes are given. We compare these classes with the classes of bounded, (pre)compact, weakly (pre)compact, and relatively weakly sequentially (pre)compact sets. If E is a Banach space, we show that the class of coarse 1-limited subsets of E coincides with the class of (1, infinity)-limited sets, and if 1 < p < infinity, then the class of coarse p-limited sets in E coincides with the class of p-(V & lowast;) sets of Pe & lstrok;czyn<acute accent>ski. We also generalize a known theorem of Grothendieck.
引用
收藏
页码:31414 / 31443
页数:30
相关论文
共 50 条