Signless Laplacian spectral characterization of some disjoint union of graphs

被引:0
|
作者
B. R. Rakshith
机构
[1] Vidyavardhaka College of Engineering,Department of Mathematics
关键词
Laplacian spectrum; Signless Laplacian spectrum; Cospectral graphs; Spectral characterization; 05C05;
D O I
暂无
中图分类号
学科分类号
摘要
The adjacency matrix of a simple and undirected graph G is denoted by A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}(G)$$\end{document} and DG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}_{G}$$\end{document} is the degree diagonal matrix of G. The Laplacian matrix of G is L(G)=DG-A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}(G)={\mathcal {D}}_{G}-{\mathcal {A}}(G)$$\end{document} and the signless Laplacian matrix of G is Q(G)=DG+A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}(G)={\mathcal {D}}_{G}+{\mathcal {A}}(G) $$\end{document}. The star graph of order n is denoted by Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{n}$$\end{document}. The double starlike treeGp,n,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_{p,n,q}$$\end{document} is obtained by attaching p pendant vertices to one pendant vertex of the path Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document} and q pendant vertices to the other pendant vertex of Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document}. In this paper, we first investigate the disjoint union of double starlike graphs Gp,2,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_{p,2,q}$$\end{document} and the star graphs Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{n}$$\end{document} for Laplacian (signless) spectral characterization. Also, the signless Laplacian spectral determination of the disjoint union of odd unicyclic graphs and star graphs is studied. Abdian et al. [AKCE Int. J. Graphs Combin. (2018) https://doi.org/10.1016/j.akcej.2018.06.009] proved that if G is a DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document} connected non-bipartite graph with n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} vertices, then G∪rK1∪sK2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cup rK_{1}\cup sK_{2}$$\end{document} is DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document}. Here we give a counterexample for the claim and also we study the graph G∪rK1∪sK2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cup rK_{1}\cup sK_{2}$$\end{document} for signless Laplacian charcterization when G has at least ((n-2)(n-3)+10)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$((n-2)(n-3)+10)/2$$\end{document} edges and s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document}. It is shown that the graph Kn∪K2∪rK1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{n}\cup K_{2}\cup rK_{1}$$\end{document} is DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document} for n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document}. We also prove that the complement graph of Kn∪K2∪rK1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{n}\cup K_{2}\cup rK_{1}$$\end{document} is DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document} for r>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>1$$\end{document} and n≠3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ne 3$$\end{document}.
引用
收藏
页码:233 / 245
页数:12
相关论文
共 50 条
  • [1] Signless Laplacian spectral characterization of some disjoint union of graphs
    Rakshith, B. R.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (01): : 233 - 245
  • [2] Signless Laplacian spectral characterization of the cones over some regular graphs
    Bu, Changjiang
    Zhou, Jiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3634 - 3641
  • [3] On the (signless) Laplacian spectral characterization of the line graphs of lollipop graphs
    Guo, Guangquan
    Wang, Guoping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (12) : 4595 - 4605
  • [4] SIGNLESS LAPLACIAN SPECTRAL CHARACTERIZATION OF SOME JOINS
    Liu, Xiaogang
    Lu, Pengli
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 443 - 454
  • [5] Signless Laplacian Spectral Characterization of Graphs with Isolated Vertices
    Huang, Shaobin
    Zhou, Jiang
    Bu, Changjiang
    FILOMAT, 2016, 30 (14) : 3689 - 3696
  • [6] Signless Laplacian Spectral Radius and Some Hamiltonian Properties of Graphs
    Li, Rao
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (06): : 823 - 835
  • [7] Signless Laplacian spectral characterization of 4-rose graphs
    Ma, Xiaoling
    Huang, Qiongxiang
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (12): : 2474 - 2485
  • [8] Laplacian spectral characterization of disjoint union of paths and cycles
    Wang, J. F.
    Simic, S. K.
    Huang, Q. X.
    Belardo, F.
    Li Marzi, E. M.
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (05): : 531 - 539
  • [9] On the distance signless Laplacian spectral radius and the distance signless Laplacian energy of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Paul, Somnath
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (03)
  • [10] On the signless Laplacian spectral radius of irregular graphs
    Ning, Wenjie
    Li, Hao
    Lu, Mei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2280 - 2288