Regularity for the approximated harmonic map equation and application to the heat flow for harmonic maps

被引:0
|
作者
Roger Moser
机构
[1] Max-Planck-Institute for Mathematics in the Sciences,
[2] Inselstraße 22–26,undefined
[3] 04103 Leipzig,undefined
[4] Germany (e-mail: moser@mis.mpg.de) ,undefined
来源
Mathematische Zeitschrift | 2003年 / 243卷
关键词
Heat Flow; Weak Solution; Riemannian Manifold; Stationary Solution; Energy Estimate;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subset{\mathbb R}^n (n \ge 2)$\end{document} be open and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N \subset {\mathbb R}^K$\end{document} a smooth, compact Riemannian manifold without boundary. We consider the approximated harmonic map equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta u + A(u)(\nabla u, \nabla u) = f$\end{document} for maps \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u \in {H^1(\Omega, N)}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f \in L^p(\Omega,{\mathbb R}^K)$\end{document}. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p > \frac{n}{2}$\end{document}, we prove Hölder continuity for weak solution s which satisfy a certain smallness condition. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p = \frac{n}{2}$\end{document}, we derive an energy estimate which allows to prove partial regularity for stationary solutions of the heat flow for harmonic maps in dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n \le 4$\end{document}.
引用
收藏
页码:263 / 289
页数:26
相关论文
共 50 条
  • [31] Nonuniqueness for the heat flow of harmonic maps on the disk
    Bertsch, M
    Dal Passo, R
    Van der Hout, R
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 161 (02) : 93 - 112
  • [32] Gradient estimates for the heat equation under the Ricci-harmonic map flow
    Bailesteanu, Mihai
    ADVANCES IN GEOMETRY, 2015, 15 (04) : 445 - 454
  • [33] HARMONIC MAP FLOW FOR ALMOST-HOLOMORPHIC MAPS
    Song, Chong
    Waldron, Alex
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 128 (03) : 1225 - 1268
  • [34] A New Conformal Heat Flow of Harmonic Maps
    Park, Woongbae
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (12)
  • [35] The heat flow and harmonic maps on a class of manifolds
    Zhang, X
    PACIFIC JOURNAL OF MATHEMATICS, 1998, 182 (01) : 157 - 182
  • [36] A New Conformal Heat Flow of Harmonic Maps
    Woongbae Park
    The Journal of Geometric Analysis, 2023, 33
  • [37] Nonuniqueness for the Heat Flow¶of Harmonic Maps on the Disk
    Michiel Bertsch Dal Passo
    Roberta van der Hout
    Rein undefined
    Archive for Rational Mechanics and Analysis, 2002, 161 : 93 - 112
  • [38] NONUNIQUENESS FOR THE HEAT-FLOW OF HARMONIC MAPS
    CORON, JM
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (04): : 335 - 344
  • [39] The harmonic map heat flow on conic manifolds
    Shao, Yuanzhen
    Wang, Changyou
    NONLINEAR DISPERSIVE WAVES AND FLUIDS, 2019, 725 : 227 - 250
  • [40] Regularity criteria for harmonic heat flow and related system
    Fan, Jishan
    Ozawa, Tohru
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (01) : 28 - 33