Regularity for the approximated harmonic map equation and application to the heat flow for harmonic maps

被引:0
|
作者
Roger Moser
机构
[1] Max-Planck-Institute for Mathematics in the Sciences,
[2] Inselstraße 22–26,undefined
[3] 04103 Leipzig,undefined
[4] Germany (e-mail: moser@mis.mpg.de) ,undefined
来源
Mathematische Zeitschrift | 2003年 / 243卷
关键词
Heat Flow; Weak Solution; Riemannian Manifold; Stationary Solution; Energy Estimate;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subset{\mathbb R}^n (n \ge 2)$\end{document} be open and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N \subset {\mathbb R}^K$\end{document} a smooth, compact Riemannian manifold without boundary. We consider the approximated harmonic map equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta u + A(u)(\nabla u, \nabla u) = f$\end{document} for maps \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u \in {H^1(\Omega, N)}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f \in L^p(\Omega,{\mathbb R}^K)$\end{document}. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p > \frac{n}{2}$\end{document}, we prove Hölder continuity for weak solution s which satisfy a certain smallness condition. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p = \frac{n}{2}$\end{document}, we derive an energy estimate which allows to prove partial regularity for stationary solutions of the heat flow for harmonic maps in dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n \le 4$\end{document}.
引用
收藏
页码:263 / 289
页数:26
相关论文
共 50 条