Approximation by shape preserving fractal functions with variable scalings

被引:0
|
作者
Sangita Jha
A. K. B. Chand
M. A. Navascués
机构
[1] National Institute of Technology Rourkela,Department of Mathematics
[2] Indian Institute of Technology Madras,Department of Mathematics
[3] Universidad de Zaragoza,Departamento de Matemática Aplicada, Escuela de Ingeniería y Arquitectura
来源
Calcolo | 2021年 / 58卷
关键词
Fractals; Fractal interpolation functions; Smoothing; Shape preservation; Chebyshev system; Müntz approximation; 28A80; 41A15; 41A29; 41A30; 41A50; 42A15;
D O I
暂无
中图分类号
学科分类号
摘要
The fractal interpolation functions with appropriate iterated function systems provide a method to perturb and approximate a continuous function on a compact interval I. This method produces a class of functions fα∈C(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{\varvec{\alpha }}\in {\mathcal {C}}(I)$$\end{document}, where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document} is a vector with functional components. The presence of scaling function in these fractal functions helps to get a wide variety of mappings for approximation problems. The current article explores the shape-preserving properties of the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document}-fractal functions with variable scalings, where the optimal ranges of the scaling functions are derived for fundamental shapes of the germ f. We provide several examples to illustrate the shape preserving results and apply our fractal methodologies in approximation problems. Also, it is shown that the order of convergence of the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document}-fractal polynomial to the original shaped function matches with that of polynomial approximation. Further, based on the shape preserving properties of the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document}-fractal functions, we provide the fractal analogue of the Chebyshev alternation theorem. To the end, we deduce the fractal version of the classical full Müntz theorem in C[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}[0,1]$$\end{document}.
引用
收藏
相关论文
共 50 条