Rational quadratic trigonometric spline fractal interpolation functions with variable scalings

被引:0
|
作者
A. K. B. Vijay
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Fractal interpolation function (FIF) constructed through an iterated function system is more versatile than any classical spline interpolation. In this paper, we propose a novel C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-rational quadratic trigonometric spline FIF with variable scaling, where the numerator and denominator of rational function are quadratic trigonometric polynomials with two shape parameters in every subinterval. The error and convergence analysis of the proposed rational trigonometric fractal interpolant are studied for data generating function in C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^3$$\end{document}. We deduce sufficient conditions based on the parameters of the rational quadratic trigonometric spline FIF to preserve positivity, monotonicity, and range restrictions features of the concerned data sets. Numerical examples are presented to supplement the shape preserving results based on a restricted class of scaling functions and minimum values of the shape parameters.
引用
下载
收藏
页码:1001 / 1013
页数:12
相关论文
共 50 条
  • [1] Rational quadratic trigonometric spline fractal interpolation functions with variable scalings
    Vijay, A. K. B.
    Chand, A. K. B.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (07): : 1001 - 1013
  • [2] C1-Rational Quadratic Trigonometric Spline Fractal Interpolation Functions
    Vijay
    Chand, A. K. B.
    MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 229 - 244
  • [3] Positivity Preserving Rational Cubic Trigonometric Fractal Interpolation Functions
    Chand, A. K. B.
    Tyada, K. R.
    MATHEMATICS AND COMPUTING, 2015, 139 : 187 - 202
  • [4] Shape preserving rational cubic trigonometric fractal interpolation functions
    Tyada, K. R.
    Chand, A. K. B.
    Sajid, M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 : 866 - 891
  • [5] C1 Rational Quadratic Trigonometric Interpolation Spline for Data Visualization
    Liu, Shengjun
    Chen, Zhili
    Zhu, Yuanpeng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [6] Piecewise quadratic trigonometric rational spline curves
    Han, XL
    SECOND INTERNATION CONFERENCE ON IMAGE AND GRAPHICS, PTS 1 AND 2, 2002, 4875 : 975 - 979
  • [7] Quadratic/Linear Rational Spline Interpolation
    Ideon, Erge
    Oja, Peeter
    MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (02) : 250 - 259
  • [8] A Rational Quadratic Trigonometric Spline with Interval Shape Control
    Sarfraz, Muhammad
    Jabeen, Nabila
    Samreen, Shamaila
    Hussain, Malik Zawwar
    2017 14TH INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS, IMAGING AND VISUALIZATION (CGIV 2017), 2017, : 8 - 13
  • [9] C-1 rational quadratic trigonometric spline
    Hussain, Maria
    Saleem, Sidra
    EGYPTIAN INFORMATICS JOURNAL, 2013, 14 (03) : 211 - 220
  • [10] Monotone Data Visualization Using Rational Trigonometric Spline Interpolation
    Ibraheem, Farheen
    Hussain, Maria
    Hussain, Andmalik Zawwar
    SCIENTIFIC WORLD JOURNAL, 2014,