Approximation of bivariate Lipschitz continuous functions by hidden variable fractal functions

被引:0
|
作者
Nallapu, Vijender [1 ]
机构
[1] Visvesvaraya Natl Inst Technol, Dept Math, South Ambazari Rd, Nagpur 440010, Maharashtra, India
关键词
Fractals; Iterated function systems; Bivariate Lipschitz continuous functions; Hidden variable fractal functions; INTERPOLATION;
D O I
10.1007/s13226-024-00631-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The crux of the present paper is approximation of bivariate Lipschitz continuous functions by hidden variable fractal functions. We propose the construction of hidden variable fractal perturbation associated with a given bivariate Lipschitz continuous function defined on a rectangle D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}$$\end{document} in the Euclidean space. This procedure yields a fractal operator on the space of all R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>2$$\end{document}-valued Lipschitz continuous functions defined on a rectangle D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}$$\end{document}. Some basic and important properties of this fractal operator will be discussed. Subsequently, we extend this fractal operator to the norm preserving bounded linear operator on the the space of all R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>2$$\end{document}-valued continuous functions defined on a rectangle D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}$$\end{document}. We investigate the stability of hidden variable fractal functions with respect to a perturbation in the scaling factors. Finally, existence of optimal hidden variable fractal function which approximates the given bivariate Lipschitz continuous function is discussed.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Approximation by Hidden Variable Fractal Functions: A Sequential Approach
    Vijender, N.
    [J]. RESULTS IN MATHEMATICS, 2019, 74 (04)
  • [2] Approximation by Hidden Variable Fractal Functions: A Sequential Approach
    N. Vijender
    [J]. Results in Mathematics, 2019, 74
  • [3] HIDDEN VARIABLE FRACTAL INTERPOLATION FUNCTIONS
    BARNSLEY, MF
    ELTON, J
    HARDIN, D
    MASSOPUST, P
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) : 1218 - 1242
  • [4] Approximation properties of bivariate α-fractal functions and dimension results
    Jha, Sangita
    Chand, A. K. B.
    Navascues, M. A.
    Sahu, Abhilash
    [J]. APPLICABLE ANALYSIS, 2021, 100 (16) : 3426 - 3444
  • [5] ON APPROXIMATION OF CONTINUOUS-FUNCTIONS IN LIPSCHITZ NORMS
    LEINDLER, L
    MEIR, A
    TOTIK, V
    [J]. ACTA MATHEMATICA HUNGARICA, 1985, 45 (3-4) : 441 - 443
  • [6] Hidden variable bivariate fractal interpolation functions and errors on perturbations of function vertical scaling factors
    Yun, Chol-Hui
    Ri, Mi-Kyong
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (02)
  • [7] Fitting Errors of Fractal Interpolation for Bivariate Continuous Functions
    Wang, Hongyong
    Ji, Jiabing
    [J]. PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 222 - 227
  • [8] Fractal Polynomials and Maps in Approximation of Continuous Functions
    Viswanathan, P.
    Navascues, M. A.
    Chand, A. K. B.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (01) : 106 - 127
  • [9] Hidden variable vector valued fractal interpolation functions
    Bouboulis, P
    Dalla, L
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2005, 13 (03) : 227 - 232
  • [10] Approximation by shape preserving fractal functions with variable scalings
    Jha, Sangita
    Chand, A. K. B.
    Navascues, M. A.
    [J]. CALCOLO, 2021, 58 (01)