Approximation of bivariate Lipschitz continuous functions by hidden variable fractal functions

被引:0
|
作者
Nallapu, Vijender [1 ]
机构
[1] Visvesvaraya Natl Inst Technol, Dept Math, South Ambazari Rd, Nagpur 440010, Maharashtra, India
关键词
Fractals; Iterated function systems; Bivariate Lipschitz continuous functions; Hidden variable fractal functions; INTERPOLATION;
D O I
10.1007/s13226-024-00631-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The crux of the present paper is approximation of bivariate Lipschitz continuous functions by hidden variable fractal functions. We propose the construction of hidden variable fractal perturbation associated with a given bivariate Lipschitz continuous function defined on a rectangle D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}$$\end{document} in the Euclidean space. This procedure yields a fractal operator on the space of all R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>2$$\end{document}-valued Lipschitz continuous functions defined on a rectangle D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}$$\end{document}. Some basic and important properties of this fractal operator will be discussed. Subsequently, we extend this fractal operator to the norm preserving bounded linear operator on the the space of all R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>2$$\end{document}-valued continuous functions defined on a rectangle D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}$$\end{document}. We investigate the stability of hidden variable fractal functions with respect to a perturbation in the scaling factors. Finally, existence of optimal hidden variable fractal function which approximates the given bivariate Lipschitz continuous function is discussed.
引用
收藏
页数:15
相关论文
共 50 条