Approximation of Lipschitz functions by Δ-convex functions in Banach spaces

被引:23
|
作者
Boiso, MC
机构
[1] Univ Paris 06, Equipe Anal, F-75252 Paris, France
[2] Univ Sevilla, Fac Matemat, Dept Anal Matemat, E-41080 Seville, Spain
关键词
D O I
10.1007/BF02773472
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give some results about the approximation of a Lipschitz function on a Banach space by means of Delta-convex functions. In particular, we prove that the density of Delta-convex functions in the set of Lipschitz functions for the topology of uniform convergence on bounded sets characterizes the superreflexivity of the Banach space. We also show that Lipschitz functions on superreflexive Banach spaces are uniform limits on the whole space of Delta-convex functions.
引用
收藏
页码:269 / 284
页数:16
相关论文
共 50 条