Classifications of Dupin hypersurfaces in Lie sphere geometry

被引:0
|
作者
Thomas E. Cecil
机构
[1] College of the Holy Cross,Department of Mathematics and Computer Science
来源
Acta Mathematica Scientia | 2024年 / 44卷
关键词
Dupin hypersurfaces; isoparametric hypersurfaces; Lie sphere geometry; Lie sphere transformations; Lie curvatures; 53A07; 53A40; 53B25; 53C40; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
This is a survey of local and global classification results concerning Dupin hypersurfaces in Sn (or Rn) that have been obtained in the context of Lie sphere geometry. The emphasis is on results that relate Dupin hypersurfaces to isoparametric hypersurfaces in spheres. Along with these classification results, many important concepts from Lie sphere geometry, such as curvature spheres, Lie curvatures, and Legendre lifts of submanifolds of Sn (or Rn), are described in detail. The paper also contains several important constructions of Dupin hypersurfaces with certain special properties.
引用
收藏
页码:1 / 36
页数:35
相关论文
共 50 条
  • [31] Dupin hypersurfaces with constant Laguerre curvatures
    Cezana, Miguel, Jr.
    Tenenblat, Keti
    MANUSCRIPTA MATHEMATICA, 2017, 154 (1-2) : 169 - 184
  • [32] Lie sphere geometry in nuclear scattering processes
    Ulrych, S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (02)
  • [33] A NOTE ON RIBAUCOUR TRANSFORMATIONS IN LIE SPHERE GEOMETRY
    Ge, Jianquan
    TOHOKU MATHEMATICAL JOURNAL, 2015, 67 (02) : 273 - 280
  • [34] Characterizing singularities of a surface in Lie sphere geometry
    Pember, Mason
    Rossman, Wayne
    Saji, Kentaro
    Teramoto, Keisuke
    HOKKAIDO MATHEMATICAL JOURNAL, 2019, 48 (02) : 281 - 308
  • [35] Deformation and applicability of surfaces in lie sphere geometry
    Musso, Emilio
    Nicolodi, Lorenzo
    TOHOKU MATHEMATICAL JOURNAL, 2006, 58 (02) : 161 - 187
  • [36] Dupin hypersurfaces with three principal curvatures
    Cecil, TE
    Jensen, GR
    INVENTIONES MATHEMATICAE, 1998, 132 (01) : 121 - 178
  • [37] Dupin hypersurfaces with four principal curvatures, II
    Cecil, Thomas E.
    Chi, Quo-Shin
    Jensen, Gary R.
    GEOMETRIAE DEDICATA, 2007, 128 (01) : 55 - 95
  • [38] Spacelike Dupin hypersurfaces in Lorentzian space forms
    Li, Tongzhu
    Nie, Changxiong
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (02) : 463 - 480
  • [39] Dupin hypersurfaces with four principal Curvatures, II
    Thomas E. Cecil
    Quo-Shin Chi
    Gary R. Jensen
    Geometriae Dedicata, 2007, 128
  • [40] PROPER DUPIN HYPERSURFACES GENERATED BY SYMMETRICAL SUBMANIFOLDS
    TAKEUCHI, M
    OSAKA JOURNAL OF MATHEMATICS, 1991, 28 (01) : 153 - 161